De Boor's Algorithm - Introduction

Introduction

The general setting is as follows. We would like to construct a curve whose shape is described by a sequence of p points, which plays the role of a control polygon. The curve can be described as a function of one parameter x. To pass through the sequence of points, the curve must satisfy \mathbf{s}(u_0)=\mathbf{d}_0, \dots,
\mathbf{s}(u_{p-1})=\mathbf{d}_{p-1}. But this is not quite the case: in general we are satisfied that the curve "approximates" the control polygon. We assume that u0, ..., up-1 are given to us along with .

One approach to solve this problem is by splines. A spline is a curve that is a piecewise nth degree polynomial. This means that, on any interval [ui, ui+1), the curve must be equal to a polynomial of degree at most n. It may be equal to different polynomials on different intervals. The polynomials must be synchronized: when the polynomials from intervals [ui-1, ui) and [ui, ui+1) meet at the point ui, they must have the same value at this point and their derivatives must be equal (to ensure that the curve is smooth).

De Boor's algorithm is an algorithm which, given u0, ..., up-1 and, finds the value of spline curve at a point x. It uses O(n2) operations. Notice that the running time of the algorithm depends only on degree n and not on the number of points p.

Read more about this topic:  De Boor's Algorithm

Famous quotes containing the word introduction:

    For better or worse, stepparenting is self-conscious parenting. You’re damned if you do, and damned if you don’t.
    —Anonymous Parent. Making It as a Stepparent, by Claire Berman, introduction (1980, repr. 1986)

    We used chamber-pots a good deal.... My mother ... loved to repeat: “When did the queen reign over China?” This whimsical and harmless scatological pun was my first introduction to the wonderful world of verbal transformations, and also a first perception that a joke need not be funny to give pleasure.
    Angela Carter (1940–1992)