Properties and Characterizations
Holonomic modules have a tendency to behave like finite-dimensional vector spaces. For example, their length is finite. Also, M is holonomic if and only if all cohomology groups of the complex Li∗(M) are finite-dimensional K-vector spaces, where i is the closed immersion of any point of X.
For any D-module M, the dual module is defined by
Holonomic modules can also be characterized by a homological condition: M is holonomic if and only if D(M) is concentrated (seen as an object in the derived category of D-modules) in degree 0. This fact is a first glimpse of Verdier duality and the Riemann–Hilbert correspondence. It is proven by extending the homological study of regular rings (especially what is related to global homological dimension) to the filtered ring DX.
Another characterization of holonomic modules is via symplectic geometry. The characteristic variety Ch(M) of any D-module M is, seen as a subvariety of the cotangent bundle T∗X of X, an involutive variety. The module is holonomic if and only if Ch(M) is Lagrangian.
Read more about this topic: D-module, Holonomic Modules
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)