Cylinder Head Porting - Wave Dynamics

Wave Dynamics

When the valve opens, the air doesn’t flow in, it decompresses into the low-pressure region below it. All the air on the upstream side of the moving disturbance boundary is completely isolated and unaffected by what happens on the downstream side. The air at the runner entrance does not move until the wave reaches all the way to the end. It is only then that the entire runner can begin to flow. Up until that point all that can happen is the higher pressure gas filling the volume of the runner decompresses or expands into the low-pressure region advancing up the runner. (Once the low pressure wave reaches the open end of the runner it reverses sign, the inrushing air forces a high pressure wave down the runner. Not shown in this animation.)

Conversely, the closing of the valve does not immediately stop flow at the runner entrance, which continues completely unaffected until the signal that the valve closed reaches it. The closing valve causes a buildup of pressure that travels up the runner as a positive wave. The runner entrance continues to flow at full speed, forcing the pressure to rise until the signal reaches the entrance. This very considerable pressure rise can be seen on the graph below, it rises far above atmospheric pressure.

It is this phenomenon that enables the so-called “ram tuning” to occur and it is what is being “tuned” by tuned intake and exhaust systems. The principle is the same as in the water hammer effect so well known to plumbers. The speed that the signal can travel is the speed of sound within the runner.

This is why port/runner volumes are so important; the volumes of successive parts of the port/runner control the flow during all transition periods. That is, any time a change occurs in the cylinder - whether positive or negative - such as when the piston reaches maximum speed. This point occurs at different points depending on the length of the connecting rod and the throw of the crank, and varies with the connecting rod ratio (rod/stroke). For normal automotive design this point is almost always between 69 and 79 degrees ATDC, with higher rod ratios favoring the later position. It only occurs at 1/2 stroke (90 degrees) with a connecting rod of infinite length.

The wave/flow activity in a real engine is vastly more complex than this but the principle is the same.

At first glance this wave travel might seem to be blindingly fast and not very significant but a few calculations shows the opposite is true. In an intake runner at room temperature the sonic speed is about 1,100 feet per second (340 m/s) and traverses a 12-inch (300 mm) port/runner in 0.9 milliseconds. The engine using this system, running at 8500 rpm, takes a very considerable 46 crank degrees before any signal from the cylinder can reach the runner end (assuming no movement of the air in the runner). 46 degrees, during which nothing but the volume of the port/runner supplies the demands of the cylinder. This not only applies to the initial signal but to any and every change in the pressure or vacuum developed in the cylinder.

Why couldn’t we just use a shorter runner so the delay is not so great? The answer lies at the end of the cycle when that big long runner now continues to flow at full speed disregarding the rising pressure in the cylinder and providing pressure to the cylinder when it is needed most. The runner length also controls the timing of the returning waves and cannot be altered. A shorter runner would flow earlier but also would die earlier while returning the positive waves much too quickly and those waves would be weaker. The key is to find the optimum balance of all the factors for the engine requirements.

Further complicating the system is the fact that the piston dome, the signal source, continually moves. First moving down the cylinder, thus increasing the distance the signal must travel. Then moving back up at the end of the intake cycle when the valve is still open past BDC. The signals coming from the piston dome, after the initial runner flow has been established, must fight upstream against whatever velocity has been developed at that instant, delaying it further. The signals developed by the piston do not have a clean path up the runner either. Large portions of it bounce off the rest of the combustion chamber and resonate inside the cylinder until an average pressure is reached. Also, temperature variations due to the changing pressures and absorption from hot engine parts cause changes in the local sonic velocity.

When the valve closes, it causes a pile up of gas giving rise to a strong positive wave that must travel up the runner. The wave activity in the port/runner does not stop but continues to reverberate for some time. When the valve next opens, the remaining waves influence the next cycle.

The graph above shows the intake runner pressure over 720 crank degrees of an engine with a 7-inch (180 mm) intake port/runner running at 4500 rpm, which is its torque peak (close to maximum cylinder filling and BMEP for this engine). The two pressure traces are taken from the valve end (blue) and the runner entrance (red). The blue line rises sharply as the intake valve closes. This causes a pile up of air, which becomes a positive wave reflected back up the runner and the red line shows that wave arriving at the runner entrance later. Note how the suction wave during cylinder filling is delayed even more by having to fight upstream against the inrushing air and the fact that the piston is further down the bore, increasing the distance.

The goal of tuning is to arrange the runners and valve timing so that there is a high-pressure wave in the port during the opening of the intake valve to get flow going quickly and then to have a second high pressure wave arrive just before valve closing so the cylinder fills as much as possible. The first wave is what is left in the runner from the previous cycle, while the second is primarily created during the current cycle by the suction wave changing sign at the runner entrance and arriving back at the valve in time for valve closing. The factors involved are often contradictory and requires a careful balancing act to work. When it does work, it is possible to see volumetric efficiencies of 140%, similar to that of a decent supercharger, but it only occurs over a limited RPM range.

Read more about this topic:  Cylinder Head Porting

Famous quotes containing the words wave and/or dynamics:

    Down the blue night the unending columns press
    In noiseless tumult, break and wave and flow,
    Rupert Brooke (1887–1915)

    Anytime we react to behavior in our children that we dislike in ourselves, we need to proceed with extreme caution. The dynamics of everyday family life also have a way of repeating themselves.
    Cathy Rindner Tempelsman (20th century)