Relation With Regular Polygons
Gauss made early inroads in the theory of cyclotomic fields, in connection with the geometrical problem of constructing a regular n-gon with a compass and straightedge. His surprising result that had escaped his predecessors was that a regular heptadecagon (with 17 sides) could be so constructed. More generally, if p is a prime number, then a regular p-gon can be constructed if and only if p is a Fermat prime; in other words if is a power of 2.
For n = 3 and n = 6 primitive roots of unity admit a simple expression via square root of three, namely:
- ζ3 = √3 i − 1/2, ζ6 = √3 i + 1/2
Hence, both corresponding cyclotomic fields are identical to the quadratic field Q(√−3). In the case of ζ4 = i = √−1 the identity of Q(ζ4) to a quadratic field is even more obvious. This is not the case for n = 5 though, because expressing roots of unity requires square roots of quadratic integers, that means that roots belong to a second iteration of quadratic extension. The geometric problem for a general n can be reduced to the following question in Galois theory: can the nth cyclotomic field be built as a sequence of quadratic extensions?
Read more about this topic: Cyclotomic Fields
Famous quotes containing the words relation and/or regular:
“The adolescent does not develop her identity and individuality by moving outside her family. She is not triggered by some magic unconscious dynamic whereby she rejects her family in favour of her peers or of a larger society.... She continues to develop in relation to her parents. Her mother continues to have more influence over her than either her father or her friends.”
—Terri Apter (20th century)
“I couldnt afford to learn it, said the Mock Turtle with a sigh. I only took the regular course.
What was that? inquired Alice.
Reeling and Writhing, of course, to begin with, the Mock Turtle replied; and then the different branches of ArithmeticAmbition, Distraction, Uglification, and Derision.
I never heard of Uglification, Alice ventured to say.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)