Cyclotomic Fields - Relation With Regular Polygons

Relation With Regular Polygons

Gauss made early inroads in the theory of cyclotomic fields, in connection with the geometrical problem of constructing a regular n-gon with a compass and straightedge. His surprising result that had escaped his predecessors was that a regular heptadecagon (with 17 sides) could be so constructed. More generally, if p is a prime number, then a regular p-gon can be constructed if and only if p is a Fermat prime; in other words if is a power of 2.

For n = 3 and n = 6 primitive roots of unity admit a simple expression via square root of three, namely:

ζ3 = √3 i − 1/2, ζ6 = √3 i + 1/2

Hence, both corresponding cyclotomic fields are identical to the quadratic field Q(√−3). In the case of ζ4 = i = √−1 the identity of Q4) to a quadratic field is even more obvious. This is not the case for n = 5 though, because expressing roots of unity requires square roots of quadratic integers, that means that roots belong to a second iteration of quadratic extension. The geometric problem for a general n can be reduced to the following question in Galois theory: can the nth cyclotomic field be built as a sequence of quadratic extensions?

Read more about this topic:  Cyclotomic Fields

Famous quotes containing the words relation and/or regular:

    There is a relation between the hours of our life and the centuries of time. As the air I breathe is drawn from the great repositories of nature, as the light on my book is yielded by a star a hundred millions of miles distant, as the poise of my body depends on the equilibrium of centrifugal and centripetal forces, so the hours should be instructed by the ages and the ages explained by the hours.
    Ralph Waldo Emerson (1803–1882)

    [I]n our country economy, letter writing is an hors d’oeuvre. It is no part of the regular routine of the day.
    Thomas Jefferson (1743–1826)