The Cycle Space Over A Field or Commutative Ring
The construction of the integral cycle space can be carried out for any field, abelian group, or (most generally) commutative ring (with unity) R replacing the integers. If R is a field, the cycle space is a vector space over R with dimension m - n + c, where c is the number of connected components of G. If R is any commutative ring, the cycle space is a free R-module with rank m - n + c.
When R is an abelian group such a cycle may also be called an R-flow on G. Nowhere-zero R-flows for a finite abelian group R of k elements are related to nowhere-zero integral k-flows in Tutte's theory. The number of nowhere-zero R-cycles is an evaluation of the Tutte polynomial, dual to the number of proper colorings of the graph (Tutte, 1984, Section IX.4).
Read more about this topic: Cycle Space
Famous quotes containing the words cycle, space and/or field:
“The Buddha, the Godhead, resides quite as comfortably in the circuits of a digital computer or the gears of a cycle transmission as he does at the top of a mountain or in the petals of a flower.”
—Robert M. Pirsig (b. 1928)
“No being exists or can exist which is not related to space in some way. God is everywhere, created minds are somewhere, and body is in the space that it occupies; and whatever is neither everywhere nor anywhere does not exist. And hence it follows that space is an effect arising from the first existence of being, because when any being is postulated, space is postulated.”
—Isaac Newton (16421727)
“I see a girl dragged by the wrists
Across a dazzling field of snow,
And there is nothing in me that resists.
Once it would not be so....”
—Philip Larkin (19221986)