The Cycle Space Over A Field or Commutative Ring
The construction of the integral cycle space can be carried out for any field, abelian group, or (most generally) commutative ring (with unity) R replacing the integers. If R is a field, the cycle space is a vector space over R with dimension m - n + c, where c is the number of connected components of G. If R is any commutative ring, the cycle space is a free R-module with rank m - n + c.
When R is an abelian group such a cycle may also be called an R-flow on G. Nowhere-zero R-flows for a finite abelian group R of k elements are related to nowhere-zero integral k-flows in Tutte's theory. The number of nowhere-zero R-cycles is an evaluation of the Tutte polynomial, dual to the number of proper colorings of the graph (Tutte, 1984, Section IX.4).
Read more about this topic: Cycle Space
Famous quotes containing the words cycle, space, field and/or ring:
“The Buddha, the Godhead, resides quite as comfortably in the circuits of a digital computer or the gears of a cycle transmission as he does at the top of a mountain or in the petals of a flower.”
—Robert M. Pirsig (b. 1928)
“from above, thin squeaks of radio static,
The captured fume of space foams in our ears”
—Hart Crane (18991932)
“Give me the splendid silent sun
with all his beams full-dazzling,
Give me juicy autumnal fruit ripe and red from the orchard,
Give me a field where the unmowd grass grows,
Give me an arbor, give me the trellisd grape,
Give me fresh corn and wheat, give me serene-moving animals teaching content,”
—Walt Whitman (18191892)
“When the merry bells ring round,
And the jocund rebecks sound
To many a youth and many a maid,
Dancing in the chequered shade;
And young and old come forth to play
On a sunshine holiday,”
—John Milton (16081674)