Cyanide Poisoning - Treatment of Poisoning and Antidotes

Treatment of Poisoning and Antidotes

The United States standard cyanide antidote kit first uses a small inhaled dose of amyl nitrite, followed by intravenous sodium nitrite, followed by intravenous sodium thiosulfate. Hydroxocobalamin is newly approved in the US and is available in Cyanokit antidote kits. Sulfanegen TEA, which could be delivered to the body through an intra-muscular (IM) injection, detoxifies cyanide and converts the cyanide into thiocyanate; a less toxic substance. Alternative methods of treating cyanide intoxication are used in other countries.

Agent Description
Nitrites The nitrites oxidize some of the hemoglobin's iron from the ferrous state to the ferric state, converting the hemoglobin into methemoglobin.

Cyanide binds avidly to methemoglobin, forming cyanmethemoglobin, thus releasing cyanide from cytochrome oxidase Treatment with nitrites is not innocuous as methemoglobin cannot carry oxygen, and methemoglobinemia needs to be treated in turn with methylene blue.

Thiosulfate The evidence for Sodium thiosulfate's use is based on animal studies and case reports: the small quantities of cyanide present in dietary sources and in cigarette smoke are normally metabolized to relatively harmless thiocyanate by the mitochondrial enzyme Rhodanese (thiosulfate cyanide sulfurtransferase), which uses thiosulfate as a substrate. However, this reaction occurs too slowly in the body for thiosulfate to be adequate by itself in acute cyanide poisoning. Thiosulfate must therefore be used in combination with nitrites.
Hydroxocobalamin Hydroxocobalamin, a form (or vitamer) of vitamin B12 made by bacteria, and sometimes denoted vitamin B12a, is used to bind cyanide to form the harmless cyanocobalamin form of vitamin B12. Hydroxocobalamin is newly approved in the US and is available in Cyanokit antidote kits. Cyanocobalamin is then eliminated through the urine. Hydroxocobalamin works both within the intravascular space and within the cells to combat cyanide intoxication. This versatility contrasts with methemoglobin, which acts only within the vascular space as an antidote. Hydroxocobalamin is superior as a single agent to thiosulfate: however,

administration of sodium thiosulfate improves the ability of hydroxocobalamin to detoxify cyanide poisoning. This treatment is considered so effective and innocuous that it is administered routinely in Paris to victims of smoke inhalation to detoxify any associated cyanide intoxication. However it is relatively expensive and not universally available.

4-Dimethylaminophenol 4-Dimethylaminophenol (4-DMAP) has been proposed in Germany as a more rapid antidote than nitrites with (reportedly) lower toxicity. 4-DMAP is used currently by the German military and by the civilian population. In humans, intravenous injection of 3 mg/kg of 4-DMAP produces 35 percent methemoglobin levels within 1 minute. Reportedly, 4-DMAP is part of the US Cyanokit, while it is not part of the German Cyanokit due to side effects (e. g. hemolysis).
Dicobalt edetate Cobalt ions, being chemically similar to iron ions, can also bind cyanide. One current cobalt-based antidote available in Europe is dicobalt edetate or dicobalt-EDTA, sold as Kelocyanor. This agent chelates cyanide as the cobalticyanide. This drug provides an antidote effect more quickly than formation of methemoglobin, but a clear superiority to methemoglobin formation has not been demonstrated. Cobalt complexes are quite toxic, and there have been accidents reported in the UK where patients have been given dicobalt-EDTA by mistake based on a false diagnoses of cyanide poisoning. Because of its side effects, it should be reserved only for patients with the most severe degree of exposure to cyanide: otherwise, nitrite/thiosulfate is preferred.
Glucose Evidence from animal experiments suggests that coadministration of glucose protects against cobalt toxicity associated with the antidote agent dicobalt edetate. For this reason, glucose is often administered alongside this agent (e.g. in the formulation 'Kelocyanor').
It has also been anecdotally suggested that glucose is itself an effective counteragent to cyanide, reacting with it to form less toxic compounds that can be eliminated by the body. One theory on the apparent immunity of Grigory Rasputin to cyanide was that his killers put the poison in sweet pastries and madeira wine, both of which are rich in sugar; thus, Rasputin would have been administered the poison together with massive quantities of antidote. One study found a reduction in cyanide toxicity in mice when the cyanide was first mixed with glucose. However, as yet glucose on its own is not an officially acknowledged antidote to cyanide poisoning.
3-Mercaptopyruvate prodrugs The most widely studied cyanide-metabolizing pathway involves utilization of thiosulfate by the enzyme rhodanese, as stated above. In humans, however, Rhodanese, is concentrated in the kidneys (0.96 Units/mg protein) and liver (0.15 u/mg), with concentrations in lung, brain, muscle and stomach not exceeding 0.03 U/ml and. In all these tissues, it is found in the mitochondrial matrix, a site of low accessibility for ionized, inorganic species, such as thiosulfate. This compartmentalizatiion of Rhodanese in mammalian tissues leaves major targets of cyanide lethality, namely, the heart and central nervous system unprotected. (Rhodanese is also found in red blood cells, but its relative importance has not been clarified.)

A different cyanide-metabolizing pathway. 3-mercaptopyruvate sulfur transferase (3-MPST, EC 2.8.1.2), which is more widely distributed in mammalian tissues than Rhodanese, is being explored. 3-MPST converts cyanide to thiocyanate, using the cysteine catabolite, 3-mercaptopyruvate (3-MP). However, 3-MP is extremely unstable chemically. Therefore, a prodrug, sulfagene sodium (2, 5- dihydroxy-1,4-dithiane-2,5-dicarboxylic acid disodium salt), which hydrolyzes into 2 molecules of 3-MP after being administered orally or parenterally, is being evaluated in animal models.

Oxygen therapy Oxygen therapy is not a cure in its own right. However, the human liver is capable of metabolizing cyanide quickly in low doses (smokers breathe in hydrogen cyanide, but it is such a small amount and metabolized so fast that it does not accumulate).

The International Programme on Chemical Safety issued a survey (IPCS/CEC Evaluation of Antidotes Series) that lists the following antidotal agents and their effects: oxygen, sodium thiosulfate, amyl nitrite, sodium nitrite, 4-dimethylaminophenol, hydroxocobalamin, and dicobalt edetate ('Kelocyanor'), as well as several others. Other commonly-recommended antidotes are 'solutions A and B' (a solution of ferrous sulfate in aqueous citric acid, and aqueous sodium carbonate) and amyl nitrite.

The UK Health and Safety Executive (HSE) has recommended against the use of solutions A and B because of their limited shelf life, potential to cause iron poisoning, and limited applicability (effective only in cases of cyanide ingestion, whereas the main modes of poisoning are inhalation and skin contact). The HSE has also questioned the usefulness of amyl nitrite due to storage/availability problems, risk of abuse, and lack of evidence of significant benefits. It also states that the availability of Kelocyanor at the workplace may mislead doctors into treating a patient for cyanide poisoning when this is an erroneous diagnosis. The HSE no longer recommends a particular cyanide antidote. Qualified UK first aiders are now only permitted to apply oxygen therapy using a bag valve mask, providing they have been trained in its usage.

Read more about this topic:  Cyanide Poisoning

Famous quotes containing the words treatment of, treatment and/or poisoning:

    The treatment of the incident of the assault upon the sailors of the Baltimore is so conciliatory and friendly that I am of the opinion that there is a good prospect that the differences growing out of that serious affair can now be adjusted upon terms satisfactory to this Government by the usual methods and without special powers from Congress.
    Benjamin Harrison (1833–1901)

    Our treatment of both older people and children reflects the value we place on independence and autonomy. We do our best to make our children independent from birth. We leave them all alone in rooms with the lights out and tell them, “Go to sleep by yourselves.” And the old people we respect most are the ones who will fight for their independence, who would sooner starve to death than ask for help.
    Margaret Mead (1901–1978)

    It is beyond a doubt that during the sixteenth century, and the years immediately preceding and following it, poisoning had been brought to a pitch of perfection which remains unknown to modern chemistry, but which is indisputably proved by history. Italy, the cradle of modern science, was at that time, the inventor and mistress of these secrets, many of which are lost.
    HonorĂ© De Balzac (1799–1850)