Cubic Graph - Hamiltonicity

Hamiltonicity

There has been much research on Hamiltonicity of cubic graphs. In 1880, P.G. Tait conjectured that every cubic polyhedral graph has a Hamiltonian circuit. William Thomas Tutte provided a counter-example to Tait's conjecture, the 46-vertex Tutte graph, in 1946. In 1971, Tutte conjectured that all bicubic graphs are Hamiltonian. However, Joseph Horton provided a counterexample on 96 vertices, the Horton graph. Later, Mark Ellingham constructed two more counterexamples : the Ellingham-Horton graphs. Barnette's conjecture, a still-open combination of Tait's and Tutte's conjecture, states that every bicubic polyhedral graph is Hamiltonian. When a cubic graph is Hamiltonian, LCF notation allows it to be represented concisely.

If a cubic graph is chosen uniformly at random among all n-vertex cubic graphs, then it is very likely to be Hamiltonian: the proportion of the n-vertex cubic graphs that are Hamiltonian tends to one in the limit as n goes to infinity.

David Eppstein conjectured that every n-vertex cubic graph has at most 2n/3 (approximately 1.260n) distinct Hamiltonian cycles, and provided examples of cubic graphs with that many cycles. The best upper bound that has been proven on the number of distinct Hamiltonian cycles is 1.276n.

Read more about this topic:  Cubic Graph