Coloring and Independent Sets
According to Brooks' theorem every cubic graph other than the complete graph K4 can be colored with at most three colors. Therefore, every cubic graph other than K4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.
According to Vizing's theorem every cubic graph needs either three or four colors for an edge coloring. A 3-edge-coloring is known as a Tait coloring, and forms a partition of the edges of the graph into three perfect matchings. By König's line coloring theorem every bicubic graph has a Tait coloring.
The bridgeless cubic graphs that do not have a Tait coloring are known as snarks. They include the Petersen graph, Tietze's graph, the Blanuša snarks, the flower snark, the double-star snark, the Szekeres snark and the Watkins snark. There is an infinite number of distinct snarks.
Read more about this topic: Cubic Graph
Famous quotes containing the words independent and/or sets:
“There are two kinds of timiditytimidity of mind, and timidity of the nerves; physical timidity, and moral timidity. Each is independent of the other. The body may be frightened and quake while the mind remains calm and bold, and vice versë. This is the key to many eccentricities of conduct. When both kinds meet in the same man he will be good for nothing all his life.”
—Honoré De Balzac (17991850)
“Certain anthropologists hold that man, having discovered tools, ceased to evolve biologically. Animals, never having discovered them, continue to fashion drills out of their beaks, oars out of their hind feet, wings out of their forefeet, suits of armor out of their hides, levers out of their horns, saws out of their teeth. Whether this be true or not, all authorities agree that man is the tool-using animal. It sets him off from the rest of the animal kingdom as drastically as does speech.”
—Stuart Chase (18881985)