Crystal Oscillator - Stability and Aging

Stability and Aging

The frequency stability is determined by the crystal's Q. It is inversely dependent on the frequency, and on the constant that is dependent on the particular cut. Other factors influencing Q are the overtone used, the temperature, the level of driving of the crystal, the quality of the surface finish, the mechanical stresses imposed on the crystal by bonding and mounting, the geometry of the crystal and the attached electrodes, the material purity and defects in the crystal, type and pressure of the gas in the enclosure, interfering modes, and presence and absorbed dose of ionizing and neutron radiation.

Temperature influences the operating frequency; various forms of compensation are used, from analog compensation (TCXO) and microcontroller compensation (MCXO) to stabilization of the temperature with a crystal oven (OCXO). The crystals possess temperature hysteresis; the frequency at a given temperature achieved by increasing the temperature is not equal to the frequency on the same temperature achieved by decreasing the temperature. The temperature sensitivity depends primarily on the cut; the temperature compensated cuts are chosen as to minimize frequency/temperature dependence. Special cuts can be made with a linear temperature characteristics; the LC cut is used in quartz thermometers. Other influencing factors are the overtone used, the mounting and electrodes, impurities in the crystal, mechanical strain, crystal geometry, rate of temperature change, thermal history (due to hysteresis), ionizing radiation, and drive level.

Crystals tend to suffer anomalies in their frequency/temperature and resistance/temperature characteristics, known as activity dips. These are small downward (in frequency) or upward (in resistance) excursions localized at certain temperatures, with their temperature position dependent on the value of the load capacitors.

Mechanical stresses also influence the frequency. The stresses can be induced by mounting, bonding, and application of the electrodes, by differential thermal expansion of the mounting, electrodes, and the crystal itself, by differential thermal stresses when there is a temperature gradient present, by expansion or shrinkage of the bonding materials during curing, by the air pressure that is transferred to the ambient pressure within the crystal enclosure, by the stresses of the crystal lattice itself (nonuniform growth, impurities, dislocations), by the surface imperfections and damage caused during manufacture, and by the action of gravity on the mass of the crystal; the frequency can therefore be influenced by position of the crystal. Other dynamic stress inducing factors are shocks, vibrations, and acoustic noise. Some cuts are less sensitive to stresses; the SC (Stress Compensated) cut is an example. Atmospheric pressure changes can also introduce deformations to the housing, influencing the frequency by changing stray capacitances.

Atmospheric humidity influences the thermal transfer properties of air, and can change electrical properties of plastics by diffusion of water molecules into their structure, altering the dielectric constants and electrical conductivity.

Other factors influencing the frequency are the power supply voltage, load impedance, magnetic fields, electric fields (in case of cuts that are sensitive to them, e.g. SC), the presence and absorbed dose of γ-particles and ionizing radiation, and the age of the crystal.

Crystals undergo slow gradual change of frequency with time, known as aging. There are many mechanisms involved. The mounting and contacts may undergo relief of the built-in stresses. Molecules of contamination either from the residual atmosphere, outgassed from the crystal, electrodes or packaging materials, or introduced during sealing the housing can be adsorbed on the crystal surface, changing its mass; this effect is exploited in quartz crystal microbalances. The composition of the crystal can be gradually altered by outgassing, diffusion of atoms of impurities or migrating from the electrodes, or the lattice can be damaged by radiation. Slow chemical reactions may occur on or in the crystal, or on the inner surfaces of the enclosure. Electrode material, e.g. chromium or aluminium, can react with the crystal, creating layers of metal oxide and silicon; these interface layers can undergo changes in time. The pressure in the enclosure can change due to varying atmospheric pressure, temperature, leaks, or outgassing of the materials inside. Factors outside of the crystal itself are e.g. aging of the oscillator circuitry (and e.g. change of capacitances), and drift of parameters of the crystal oven. External atmosphere composition can also influence the aging; hydrogen can diffuse through nickel housing. Helium can cause similar issues when it diffuses through glass enclosures of rubidium standards.

Gold is a favored electrode material for low-aging resonators; its adhesion to quartz is strong enough to maintain contact even at strong mechanical shocks, but weak enough to not support significant strain gradients (unlike chromium, aluminium, and nickel). Gold also does not form oxides; it adsorbs organic contaminants from the air, but these are easy to remove. However, gold alone can undergo delamination; a layer of chromium is therefore sometimes used for improved binding strength. Silver and aluminium are often used as electrodes; however both form oxide layers with time that increases the crystal mass and lowers frequency. Silver can be passivated by exposition to iodine vapors, forming a layer of silver iodide. Aluminium oxidizes readily but slowly, until about 5 nm thickness is reached; increased temperature during artificial aging does not significantly increase the oxide forming speed; a thick oxide layer can be formed during manufacture by anodizing. Exposition of silver-plated crystal to iodine vapors can be also used in amateur conditions for lowering the crystal frequency slightly; the frequency can be also increased by scratching off parts of the electrodes, but that carries risk of damage to the crystal and loss of Q.

A DC voltage bias between the electrodes can accelerate the initial aging, probably by induced diffusion of impurities through the crystal. Placing a capacitor in series with the crystal and a several-megohm resistor in parallel can minimize such voltages.

Crystals suffer from minor short-term frequency fluctuations as well. The main causes of such noise are e.g. thermal noise (which limits the noise floor), phonon scattering (influenced by lattice defects), adsorption/desorption of molecules on the surface of the crystal, noise of the oscillator circuits, mechanical shocks and vibrations, acceleration and orientation changes, temperature fluctuations, and relief of mechanical stresses. The short-term stability is measured by four main parameters: Allan variance (the most common one specified in oscillator data sheets), phase noise, spectral density of phase deviations, and spectral density of fractional frequency deviations. The effects of acceleration and vibration tend to dominate the other noise sources; surface acoustic wave devices tend to be more sensitive than bulk acoustic wave (BAW) ones, and the stress-compensated cuts are even less sensitive. The relative orientation of the acceleration vector to the crystal dramatically influences the crystal's vibration sensitivity. Mechanical vibration isolation mountings can be used for high-stability crystals.

Crystals are sensitive to shock. The mechanical stress causes short-time change in the oscillator frequency due to the stress-sensitivity of the crystal, and can introduce a permanent change of frequency due to shock-induced changes of mounting and internal stresses (if the elastic limits of the mechanical parts are exceeded), desorption of contamination from the crystal surfaces, or change in parameters of the oscillator circuit. High magnitudes of shocks may tear the crystals off their mountings (especially the case of large low-frequency crystals suspended on thin wires), or cause cracking of the crystal. Crystals free of surface imperfections are highly shock-resistant; chemical polishing can produce crystals able to survive tens of thousands g.

Phase noise plays significant role in frequency synthesis systems using frequency multiplication; a multiplication of a frequency by N increases the phase noise power by N2. A frequency multiplication by 10 times multiplies the magnitude of the phase error by 10 times. This can be disastrous for systems employing e.g. PLL or FSK technologies.

Crystals are somewhat sensitive to radiation damage. Natural quartz is much more sensitive than artificially grown crystals, and sensitivity can be further reduced by sweeping the crystal – heating the crystal to at least 400 °C in hydrogen-free atmosphere in electric field of at least 500 V/cm for at least 12 hours. Such swept crystals have very low response to steady ionizing radiation. Some Si(IV) atoms are replaced with Al(III) impurities, each having a compensating Li+ or Na+ cation nearby. Ionization produces electron-hole pairs; the holes are trapped in the lattice near the Al atom, the resulting Li and Na atoms are loosely trapped along the Z axis; the change of the lattice near the Al atom and the corresponding elastic constant then causes a corresponding change in frequency. Sweeping removes the Li+ and Na+ ions from the lattice, reducing this effect. The Al3+ site can also trap hydrogen atoms. All crystals have transient negative frequency shift after exposition to an X-ray pulse; the frequency then shifts gradually back; natural quartz reaches stable frequency after 10–1000 seconds, with negative offset to pre-irradiation frequency, artificial crystals return to frequency slightly lower or higher than pre-irradiation, swept crystals anneal virtually back to original frequency. The annealing is faster at higher temperatures. Sweeping under vacuum at higher temperatures and field strength can further reduce the crystal's response to X-ray pulses. Series resistance of unswept crystals increases after an X-ray dose, and anneals back to a somewhat higher value for a natural quartz (requiring a corresponding gain reserve in the circuit) and back to pre-irradiation value for synthetic crystals. Series resistance of swept crystals is unaffected. Increase of series resistance degrades Q; too high increase can stop the oscillations. Neutron radiation induces frequency changes by introducing dislocations into the lattice by knocking out atoms, a single fast neutron can produce many defects; the SC and AT cut frequency increases roughly linearly with absorbed neutron dose, while the frequency of the BT cuts decreases. Neutrons also alter the temperature-frequency characteristics. Frequency change at low ionizing radiation doses is proportionally higher than for higher doses. High-intensity radiation can stop the oscillator by inducing photoconductivity in the crystal and transistors; with a swept crystal and properly designed circuit the oscillations can restart within 15 microseconds after the radiation burst. Quartz crystals with high level of alkali metal impurities lose Q with irradiation; Q of swept artificial crystals is unaffected. Irradiation with higher doses (over 105 rad) lowers sensitivity to subsequent doses. Very low radiation doses (below 300 rad) have disproportionately higher effect, but this nonlinearity saturates at higher doses. At very high doses, the radiation response of the crystal saturates as well, due to finite number of impurity sites that can be affected.

Magnetic fields have low effect on the crystal itself, as quartz is diamagnetic; eddy currents or AC voltages can however be induced into the circuits, and magnetic parts of the mounting and housing may be influenced.

After the power-up, the crystals take several seconds to minutes to "warm up" and stabilize their frequency. The oven-controlled OCXOs require usually 3–10 minutes for heating up and reaching thermal equilibrium; the oven-less oscillators stabilize in several seconds as the few milliwatts dissipated in the crystal cause a small but noticeable level of internal heating.

Crystals have no inherent failure mechanisms; some are operating in devices for decades. Failures may be however introduced by faults in bonding, leaky enclosures, corrosion, frequency shift by aging, breaking the crystal by too high mechanical shock, or radiation induced damage when nonswept quartz is used. Crystals can be also damaged by overdriving.

The crystals have to be driven at the appropriate drive level. While AT cuts tend to be fairly forgiving, and only their electrical parameters, stability and aging characteristics are degraded when overdriven, low-frequency crystals, especially flexural-mode ones, may fracture at too high drive levels. The drive level is specified as the amount of power dissipated in the crystal. The appropriate drive levels are about 5 microwatts for flexural modes up to 100 kHz, 1 microwatt for fundamental modes at 1–4 MHz, 0.5 microwatts for fundamental modes 4–20 MHz, and 0.5 microwatts for overtone modes at 20–200 MHz. Too low drive level may cause problems with starting the oscillator. Low drive levels are better for higher stability and lower power consumption of the oscillator. Higher drive levels, in turn, reduce the impact of noise by increasing the signal-to-noise ratio.

The stability of AT cut crystals decreases with increasing frequency. For more accurate higher frequencies it is better to use a crystal with lower fundamental frequency, operating at an overtone.

Aging decreases logarithmically with time, the highest changes occurring shortly after manufacture. Artificially aging the crystal by its prolonged storage at between 85–125 °C can be done for increasing long-term stability.

A badly designed oscillator circuit may suddenly become oscillating on an overtone; in 1972, a train in Fremont, California crashed. An inappropriate value of the tank capacitor caused the crystal in a control board to be overdriven, jumping to an overtone, and causing the train to speed up instead of slowing down.

Read more about this topic:  Crystal Oscillator

Famous quotes containing the words stability and/or aging:

    Every quotation contributes something to the stability or enlargement of the language.
    Samuel Johnson (1709–1784)

    The politics of the exile are fever,
    revenge, daydream,
    theater of the aging convalescent.
    You wait in the wings and rehearse.
    You wait and wait.
    Marge Piercy (b. 1936)