Cross-linked Enzyme Aggregate - Immobilisation

Immobilisation

See Immobilized enzyme for more information.

There are several reasons for immobilizing an enzyme. In addition to more convenient handling of the enzyme, it provides for its facile separation from the product, thereby minimizing or eliminating protein contamination of the product. Immobilization also facilitates the efficient recovery and re-use of costly enzymes, in many applications a conditio sine qua non for economic viability, and enables their use in continuous, fixed-bed operation. A further benefit is often enhanced stability, under both storage and operational conditions, e.g. towards denaturation by heat or organic solvents or by autolysis. Enzymes are rather delicate molecules that can easily lose their unique three dimensional structure, essential for their activity, by denaturation (unfolding). Improved enzyme performance via enhanced stability, over a broad pH and temperature range as well as tolerance towards organic solvents, coupled with repeated re-use is reflected in higher catalyst productivities (kg product/kg enzyme) which, in turn, determine the enzyme costs per kg product.

Basically, three traditional methods of enzyme immobilization can be distinguished: binding to a support(carrier), entrapment (encapsulation) and cross-linking. Support binding can be physical, ionic, or covalent in nature. However, physical bonding is generally too weak to keep the enzyme fixed to the carrier under industrial conditions of high reactant and product concentrations and high ionic strength. The support can be a synthetic resin, a biopolymer or an inorganic polymer such as (mesoporous) silica or a zeolite. Entrapment involves inclusion of an enzyme in a polymer network (gel lattice) such as an organic polymer or a silica sol-gel, or a membrane device such as a hollow fiber or a microcapsule. Entrapment requires the synthesis of the polymeric network in the presence of the enzyme. The third category involves cross-linking of enzyme aggregates or crystals, using a bifunctional reagent, to prepare carrier-free macroparticles.

The use of a carrier inevitably leads to ‘dilution of activity’, owing to the introduction of a large portion of non-catalytic ballast, ranging from 90% to >99%, which results in lower space-time yields and productivities. Moreover, immobilization of an enzyme on a carrier often leads to a substantial loss of activity, especially at high enzyme loadings. Consequently, there is an increasing interest in carrier-free immobilized enzymes, such as cross-linked enzyme crystals (CLECs) and cross-linked enzyme aggregates (CLEAs) that offer the advantages of highly concentrated enzyme activity combined with high stability and low production costs owing to the exclusion of an additional (expensive) carrier.

Read more about this topic:  Cross-linked Enzyme Aggregate