Critical Point (mathematics) - Definition For Single Variable Functions

Definition For Single Variable Functions

A critical point of a function of a single real variable, ƒ(x), is a value x0 in the domain of ƒ where either the function is not differentiable or its derivative is 0, ƒ′(x0) = 0. Any value in the codomain of ƒ that is the image of a critical point under ƒ is a critical value of ƒ. These concepts may be visualized through the graph of ƒ: at a critical point, either the graph does not admit a tangent or the tangent is a vertical or horizontal line. In the last case, the derivative is zero and the point is called a stationary point of the function.

Read more about this topic:  Critical Point (mathematics)

Famous quotes containing the words definition, single, variable and/or functions:

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)

    There is not a single crowned head in Europe whose talents or merit would entitle him to be elected a vestryman by the people of any parish in America.
    Thomas Jefferson (1743–1826)

    There is not so variable a thing in nature as a lady’s head-dress.
    Joseph Addison (1672–1719)

    The mind is a finer body, and resumes its functions of feeding, digesting, absorbing, excluding, and generating, in a new and ethereal element. Here, in the brain, is all the process of alimentation repeated, in the acquiring, comparing, digesting, and assimilating of experience. Here again is the mystery of generation repeated.
    Ralph Waldo Emerson (1803–1882)