Critical Band - Anatomy and Physiology of The Basilar Membrane

Anatomy and Physiology of The Basilar Membrane

The human ear is made up of three areas: the outer, middle and inner ear. Within the inner ear sits the cochlea. The cochlea is a snail-shaped formation that enables sound transmission via a sensorineural route, rather than through a conductive pathway. The cochlea is a complex structure, consisting of three layers of fluid. The scala vestibuli and scala media are separated by Reissner’s Membrane whereas the scala media and scala tympani are divided by the basilar membrane. The diagram below illustrates the complex layout of the compartments and their divisions:

The basilar membrance widens as it progresses from base to apex. Therefore, the base (the thinnest part) has a greater stiffness than the apex. This means that the amplitude of a sound wave travelling through the basilar membrane varies as it travels through the cochlea. When a vibration is carried through the cochlea, the fluid within the three compartments causes the basilar membrane to respond in a wave-like manner. This wave is referred to as a 'travelling wave'; this term means that the basilar membrane does not simply vibrate as one unit from the base towards the apex.

When a sound is presented to the human ear, the time taken for the wave to travel through the cochlea is only 5 milliseconds.

When low-frequency travelling waves pass through the cochlea, the wave increases in amplitude gradually, then decays almost immediately. The placement of vibration on the cochlea depends upon the frequency of the presented stimuli. For example, lower frequencies mostly stimulate the apex, in comparison to higher frequencies, which stimulate the base of the cochlea. This attribute of the physiology of the basilar membrane can be illustrated in the form of a place–frequency map:

The basilar membrane supports the organ of Corti, which sits within the scala media. The organ of Corti comprises both outer and inner hair cells. There are approximately between 15,000 and 16,000 of these hair cells in one ear. Outer hair cells have stereocilia projecting towards the tectorial membrane, which sits above the organ of Corti. Stereocilia respond to movement of the tectorial membrane when a sound causes vibration through the cochlea. When this occurs, the stereocilia separate and a channel is formed that allows chemical processes to take place. Eventually the signal reaches the eighth nerve, followed by processing in the brain.

Read more about this topic:  Critical Band

Famous quotes containing the words anatomy and/or physiology:

    Man is a shrewd inventor, and is ever taking the hint of a new machine from his own structure, adapting some secret of his own anatomy in iron, wood, and leather, to some required function in the work of the world.
    Ralph Waldo Emerson (1803–1882)

    A physician’s physiology has much the same relation to his power of healing as a cleric’s divinity has to his power of influencing conduct.
    Samuel Butler (1835–1902)