Cre-Lox Recombination - Holliday Junctions and Homologous Recombination

Holliday Junctions and Homologous Recombination

During genetic recombination, a Holliday junction is formed between the two strands of DNA and a double-stranded break in a DNA molecule leaves a 3’OH end exposed. This reaction is aided with the endonuclease activity of an enzyme. 5’ Phosphate ends are usually the substrates for this reaction, thus extended 3’ regions remain. This 3’ OH group is highly unstable, and the strand on which it is present must find its complement. Since Homologous Recombination occurs after DNA replication, two strands of DNA are available, and, thus, the 3’ OH group must pair with its complement, and it does so, with an intact strand on the other duplex. Now, one point of crossover has occurred, which is what is called a Holliday Intermediate.

The 3’OH end is elongated (that is, bases are added) with the help of DNA Polymerase. The pairing of opposite strands is what constitutes the crossing-over or Recombination event, which is common to all living organisms, since the genetic material on one strand of one duplex has paired with one strand of another duplex, and has been elongated by DNA polymerase. Further cleavage of Holliday Intermediates results in formation of Hybrid DNA.

This further cleavage or ‘resolvation’ is done by a special group of enzymes called Resolvases. RuvC is just one of these Resolvases that have been isolated in bacteria and yeast.

For many years, it was thought that when the Holliday junction intermediate was formed, the branch point of the junction (where the strands cross over) would be located at the first cleavage site. Migration of the branch point to the second cleavage site would then somehow trigger the second half of the pathway. This model provided convenient explanation for the strict requirement for homology between recombining sites, since branch migration would stall at a mismatch and would not allow the second strand exchange to occur. In more recent years, however, this view has been challenged, and most of the current models for Int, Xer, and Flp recombination involve only limited branch migration 1–3 base pairs) of the Holliday intermediate, coupled to an isomerisation event that is responsible for switching the strand cleavage specificity.

Read more about this topic:  Cre-Lox Recombination