Relations With Groupoids
One of the ways of expressing the algebraic content of the theory of covering spaces is using groupoids and the fundamental groupoid. The latter functor gives an equivalence of categories
between the category of covering spaces of a reasonably nice space X and the category of groupoid covering morphisms of π1(X). Thus a particular kind of map of spaces is well modelled by a particular kind of morphism of groupoids. The category of covering morphisms of a groupoid G is also equivalent to the category of actions of G on sets, and this allows the recovery of more traditional classifications of coverings. Proofs of these facts are given in the book 'Topology and Groupoids' referenced below.
Read more about this topic: Covering Space
Famous quotes containing the words relations with and/or relations:
“The land is the appointed remedy for whatever is false and fantastic in our culture. The continent we inhabit is to be physic and food for our mind, as well as our body. The land, with its tranquilizing, sanative influences, is to repair the errors of a scholastic and traditional education, and bring us to just relations with men and things.”
—Ralph Waldo Emerson (18031882)
“I want relations which are not purely personal, based on purely personal qualities; but relations based upon some unanimous accord in truth or belief, and a harmony of purpose, rather than of personality. I am weary of personality.... Let us be easy and impersonal, not forever fingering over our own souls, and the souls of our acquaintances, but trying to create a new life, a new common life, a new complete tree of life from the roots that are within us.”
—D.H. (David Herbert)