Covering Space - Generalizations

Generalizations

As a homotopy theory, the notion of covering spaces works well when the deck transformation group is discrete, or, equivalently, when the space is locally path-connected. However, when the deck transformation group is a topological group whose topology is not discrete, difficulties arise. Some progress has been made for more complex spaces, such as the Hawaiian earring; see the references there for further information.

A number of these difficulties are resolved with the notion of semicovering due to Jeremy Brazas, see the paper cited below. Every covering map is a semicovering, but semicoverings satisfy the "2 out of 3" rule: given a composition h = fg of maps of spaces, if two of the maps are semicoverings, then so also is the third. This rule does not hold for coverings, since the composition of covering maps need not be a covering map.

Another generalisation is to actions of a group which are not free. Ross Geoghegan in his 1986 review (MR0760769) of two papers by M.A. Armstrong on the fundamental groups of orbit spaces wrote: "These two papers show which parts of elementary covering space theory carry over from the free to the nonfree case. This is the kind of basic material that ought to have been in standard textbooks on fundamental groups for the last fifty years." At present, "Topology and Groupoids" listed below seems to be the only basic topology text to cover such results.

Read more about this topic:  Covering Space