Cover in Topology
Covers are commonly used in the context of topology. If the set X is a topological space, then a cover C of X is a collection of subsets Uα of X whose union is the whole space X. In this case we say that C covers X, or that the sets Uα cover X. Also, if Y is a subset of X, then a cover of Y is a collection of subsets of X whose union contains Y, i.e., C is a cover of Y if
Let C be a cover of a topological space X. A subcover of C is a subset of C that still covers X.
We say that C is an open cover if each of its members is an open set (i.e. each Uα is contained in T, where T is the topology on X).
A cover of X is said to be locally finite if every point of X has a neighborhood which intersects only finitely many sets in the cover. Formally, C = {Uα} is locally finite if for any x ∈ X, there exists some neighborhood N(x) of x such that the set
is finite. A cover of X is said to be point finite if every point of X is contained in only finitely many sets in the cover.
Read more about this topic: Cover (topology)
Famous quotes containing the word cover:
“Though the whole wind
slash at your bark,
you are lifted up,
aye though it hiss
to cover you with froth.”
—Hilda Doolittle (18861961)