Cover (topology) - Cover in Topology

Cover in Topology

Covers are commonly used in the context of topology. If the set X is a topological space, then a cover C of X is a collection of subsets Uα of X whose union is the whole space X. In this case we say that C covers X, or that the sets Uα cover X. Also, if Y is a subset of X, then a cover of Y is a collection of subsets of X whose union contains Y, i.e., C is a cover of Y if

Let C be a cover of a topological space X. A subcover of C is a subset of C that still covers X.

We say that C is an open cover if each of its members is an open set (i.e. each Uα is contained in T, where T is the topology on X).

A cover of X is said to be locally finite if every point of X has a neighborhood which intersects only finitely many sets in the cover. Formally, C = {Uα} is locally finite if for any xX, there exists some neighborhood N(x) of x such that the set

is finite. A cover of X is said to be point finite if every point of X is contained in only finitely many sets in the cover.

Read more about this topic:  Cover (topology)

Famous quotes containing the word cover:

    Every man alone is sincere. At the entrance of a second person, hypocrisy begins. We parry and fend the approach of our fellow-man by compliments, by gossip, by amusements, by affairs. We cover up our thought from him under a hundred folds.
    Ralph Waldo Emerson (1803–1882)