The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.
This article uses SI units for the purely spatial components of tensors (including vectors), the classical treatment of tensors and the Einstein summation convention throughout, and the Minkowski metric has the form diag (+1, −1, −1, −1). Where the equations are specified as holding in a vacuum, one could instead regard them as the formulation of Maxwell's equations in terms of total charge and current.
For a more general overview of the relationships between classical electromagnetism and special relativity, including various conceptual implications of this picture, see Classical electromagnetism and special relativity.
Read more about Covariant Formulation Of Classical Electromagnetism: Maxwell's Equations in Vacuo, Maxwell's Equations in Matter
Famous quotes containing the words formulation and/or classical:
“In necessary things, unity; in disputed things, liberty; in all things, charity.”
—Variously Ascribed.
The formulation was used as a motto by the English Nonconformist clergyman Richard Baxter (1615-1691)
“Culture is a sham if it is only a sort of Gothic front put on an iron buildinglike Tower Bridgeor a classical front put on a steel framelike the Daily Telegraph building in Fleet Street. Culture, if it is to be a real thing and a holy thing, must be the product of what we actually do for a livingnot something added, like sugar on a pill.”
—Eric Gill (18821940)