Covariant Derivative - Relation To Lie Derivative

Relation To Lie Derivative

A covariant derivative introduces an extra geometric structure on a manifold which allows vectors in neighboring tangent spaces to be compared. This extra structure is necessary because there is no canonical way to compare vectors from different vector spaces, as is necessary for this generalization of the directional derivative. There is however another generalization of directional derivatives which is canonical: the Lie derivative. The Lie derivative evaluates the change of one vector field along the flow of another vector field. Thus, one must know both vector fields in an open neighborhood. The covariant derivative on the other hand introduces its own change for vectors in a given direction, and it only depends on the vector direction at a single point, rather than a vector field in an open neighborhood of a point. In other words, the covariant derivative is linear (over C∞(M)) in the direction argument, while the Lie derivative is linear in neither argument.

Note that the antisymmetrized covariant derivative ∇uv − ∇vu, and the Lie derivative Luv differ by the torsion of the connection, so that if a connection is symmetric, then its antisymmetrization is the Lie derivative.

Read more about this topic:  Covariant Derivative

Famous quotes containing the words relation to, relation, lie and/or derivative:

    You see, I am alive, I am alive
    I stand in good relation to the earth
    I stand in good relation to the gods
    I stand in good relation to all that is beautiful
    I stand in good relation to the daughter of Tsen-tainte
    You see, I am alive, I am alive
    N. Scott Momaday (b. 1934)

    Skepticism is unbelief in cause and effect. A man does not see, that, as he eats, so he thinks: as he deals, so he is, and so he appears; he does not see that his son is the son of his thoughts and of his actions; that fortunes are not exceptions but fruits; that relation and connection are not somewhere and sometimes, but everywhere and always; no miscellany, no exemption, no anomaly,—but method, and an even web; and what comes out, that was put in.
    Ralph Waldo Emerson (1803–1882)

    O mighty Caesar! Dost thou lie so low?
    Are all thy conquests, glories, triumphs, spoils,
    Shrunk to this little measure? Fare thee well.
    William Shakespeare (1564–1616)

    When we say “science” we can either mean any manipulation of the inventive and organizing power of the human intellect: or we can mean such an extremely different thing as the religion of science the vulgarized derivative from this pure activity manipulated by a sort of priestcraft into a great religious and political weapon.
    Wyndham Lewis (1882–1957)