Relation To Lie Derivative
A covariant derivative introduces an extra geometric structure on a manifold which allows vectors in neighboring tangent spaces to be compared. This extra structure is necessary because there is no canonical way to compare vectors from different vector spaces, as is necessary for this generalization of the directional derivative. There is however another generalization of directional derivatives which is canonical: the Lie derivative. The Lie derivative evaluates the change of one vector field along the flow of another vector field. Thus, one must know both vector fields in an open neighborhood. The covariant derivative on the other hand introduces its own change for vectors in a given direction, and it only depends on the vector direction at a single point, rather than a vector field in an open neighborhood of a point. In other words, the covariant derivative is linear (over C∞(M)) in the direction argument, while the Lie derivative is linear in neither argument.
Note that the antisymmetrized covariant derivative ∇uv − ∇vu, and the Lie derivative Luv differ by the torsion of the connection, so that if a connection is symmetric, then its antisymmetrization is the Lie derivative.
Read more about this topic: Covariant Derivative
Famous quotes containing the words relation to, relation, lie and/or derivative:
“Among the most valuable but least appreciated experiences parenthood can provide are the opportunities it offers for exploring, reliving, and resolving ones own childhood problems in the context of ones relation to ones child.”
—Bruno Bettelheim (20th century)
“There is undoubtedly something religious about it: everyone believes that they are special, that they are chosen, that they have a special relation with fate. Here is the test: you turn over card after card to see in which way that is true. If you can defy the odds, you may be saved. And when you are cleaned out, the last penny gone, you are enlightened at last, free perhaps, exhilarated like an ascetic by the falling away of the material world.”
—Andrei Codrescu (b. 1947)
“My soul is now her day, my day her night,
So I lie down, and so I rise;”
—Karl Shapiro (b. 1913)
“Poor John Field!I trust he does not read this, unless he will improve by it,thinking to live by some derivative old-country mode in this primitive new country.... With his horizon all his own, yet he a poor man, born to be poor, with his inherited Irish poverty or poor life, his Adams grandmother and boggy ways, not to rise in this world, he nor his posterity, till their wading webbed bog-trotting feet get talaria to their heels.”
—Henry David Thoreau (18171862)