Derivative Along Curve
Since the covariant derivative of a tensor field at a point depends only on value of the vector field at one can define the covariant derivative along a smooth curve in a manifold:
Note that the tensor field only needs to be defined on the curve for this definition to make sense.
In particular, is a vector field along the curve itself. If vanishes then the curve is called a geodesic of the covariant derivative. If the covariant derivative is the Levi-Civita connection of a certain metric then the geodesics for the connection are precisely the geodesics of the metric that are parametrised by arc length.
The derivative along a curve is also used to define the parallel transport along the curve.
Sometimes the covariant derivative along a curve is called absolute or intrinsic derivative.
Read more about this topic: Covariant Derivative
Famous quotes containing the words derivative and/or curve:
“When we say science we can either mean any manipulation of the inventive and organizing power of the human intellect: or we can mean such an extremely different thing as the religion of science the vulgarized derivative from this pure activity manipulated by a sort of priestcraft into a great religious and political weapon.”
—Wyndham Lewis (18821957)
“And out again I curve and flow
To join the brimming river,
For men may come and men may go,
But I go on forever.”
—Alfred Tennyson (18091892)