Definition and Examples
The factorial function n! is recursively defined by the rules
- 0! = 1,
- (n+1)! = (n+1)*(n!).
This recursion is a primitive recursion because it computes the next value (n+1)! of the function based on the value of n and the previous value n! of the function. On the other hand, the function Fib(n), which returns the nth Fibonacci number, is defined with the recursion equations
- Fib(0) = 0,
- Fib(1) = 1,
- Fib(n+2) = Fib(n+1) + Fib(n).
In order to compute Fib(n+2), the last two values of the Fib function are required. Finally, consider the function g defined with the recursion equations
- g(0) = 0,
- .
To compute g(n+1) using these equations, all the previous values of g must be computed; no fixed finite number of previous values is sufficient in general for the computation of g. The functions Fib and g are examples of functions defined by course-of-values recursion.
In general, a function f is defined by course-of-values recursion if there is a fixed primitive recursive function h such that for all n,
where is a Gödel number encoding the indicated sequence. In particular
provides the initial value of the recursion. The function h might test its first argument to provide explicit initial values, for instance for Fib one could use the function defined by
where s denotes extraction of the element i from an encoded sequence s; this is easily seen to be a primitive recursive function (assuming an appropriate Gödel numbering is used).
Read more about this topic: Course-of-values Recursion
Famous quotes containing the words definition and/or examples:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)