Corner Transfer Matrix - Definition

Definition

Consider an IRF (interaction-round-a-face) model, i.e. a square lattice model with a spin σi assigned to each site i and interactions limited to spins around a common face. Let the total energy be given by

where for each face the surrounding sites i, j, k and l are arranged as follows:



For a lattice with N sites, the partition function is

where the sum is over all possible spin configurations and w is the Boltzmann weight


To simplify the notation, we use a ferromagnetic Ising-type lattice where each spin has the value +1 or −1, and the ground state is given by all spins up (i.e. the total energy is minimised when all spins on the lattice have the value +1). We also assume the lattice has 4-fold rotational symmetry (up to boundary conditions) and is reflection-invariant. These simplifying assumptions are not crucial, and extending the definition to the general case is relatively straightforward.

Now consider the lattice quadrant shown below:



The outer boundary sites, marked by triangles, are assigned their ground state spins (+1 in this case). The sites marked by open circles form the inner boundaries of the quadrant; their associated spin sets are labelled {σ1,…,σm} and {σ'1,…,σ'm}, where σ1 = σ'1. There are 2m possible configurations for each inner boundary, so we define a 2m×2m matrix entry-wise by


The matrix A, then, is the corner transfer matrix for the given lattice quadrant. Since the outer boundary spins are fixed and the sum is over all interior spins, each entry of A is a function of the inner boundary spins. The Kronecker delta in the expression ensures that σ1 = σ'1, so by ordering the configurations appropriately we may cast A as a block diagonal matrix:

\begin{array}{cccc} & & \begin{array}{ccccc}
\sigma_{1}'=+1 & & & & \sigma_{1}'=-1\end{array}\\
A & = & \left[\begin{array}{ccccccc} & & & |\\ & A_{+} & & | & & 0\\ & & & |\\
- & - & - & | & - & - & -\\ & & & |\\ & 0 & & | & & A_{-}\\ & & & |\end{array}\right] & \begin{array}{c}
\sigma_{1}=+1\\
\\\\\\\sigma_{1}=-1\end{array}\end{array}


Corner transfer matrices are related to the partition function in a simple way. In our simplified example, we construct the full lattice from four rotated copies of the lattice quadrant, where the inner boundary spin sets σ, σ', σ" and σ'" are allowed to differ:


The partition function is then written in terms of the corner transfer matrix A as

Read more about this topic:  Corner Transfer Matrix

Famous quotes containing the word definition:

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)