Conway's Thrackle Conjecture - Known Bounds

Known Bounds

Lovász et al. proved that every bipartite thrackle is a planar graph, although not drawn in a planar way. As a consequence, they show that every thrackleable graph with n vertices has at most 2n − 3 edges. Since then, this bound has been improved two times. First, it was improved to 3(n − 1)/2, and the current best bound is roughly 1.428n. Moreover, the method used to prove this result yields for any ε>0 a finite algorithm that either improves the bound to (1 + ε)n or disproves the conjecture.

If the conjecture is false, a minimal counterexample would have the form of two even cycles sharing a vertex. Therefore, to prove the conjecture, it would suffice to prove that graphs of this type cannot be drawn as thrackles.

Read more about this topic:  Conway's Thrackle Conjecture

Famous quotes containing the word bounds:

    At bounds of boundless void.
    Samuel Beckett (1906–1989)

    Great Wits are sure to Madness near alli’d
    And thin Partitions do their Bounds divide;
    Else, why should he, with Wealth and Honour blest,
    Refuse his Age the needful hours of Rest?
    John Dryden (1631–1700)