Proof
The proof here is shown for a particular normalisation of the Fourier transform. As mentioned above, if the transform is normalised differently, then constant scaling factors will appear in the derivation.
Let f, g belong to L1(Rn). Let be the Fourier transform of and be the Fourier transform of :
where the dot between x and ν indicates the inner product of Rn. Let be the convolution of and
Now notice that
Hence by Fubini's theorem we have that so its Fourier transform is defined by the integral formula
Observe that and hence by the argument above we may apply Fubini's theorem again (i.e. interchange the order of integration):
Substitute ; then, so:
These two integrals are the definitions of and, so:
QED.
Read more about this topic: Convolution Theorem
Famous quotes containing the word proof:
“When children feel good about themselves, its like a snowball rolling downhill. They are continually able to recognize and integrate new proof of their value as they grow and mature.”
—Stephanie Martson (20th century)
“If any doubt has arisen as to me, my country [Virginia] will have my political creed in the form of a Declaration &c. which I was lately directed to draw. This will give decisive proof that my own sentiment concurred with the vote they instructed us to give.”
—Thomas Jefferson (17431826)
“He who has never failed somewhere, that man can not be great. Failure is the true test of greatness. And if it be said, that continual success is a proof that a man wisely knows his powers,it is only to be added, that, in that case, he knows them to be small.”
—Herman Melville (18191891)
