Convex Optimization

Convex Optimization

Convex minimization, a subfield of optimization, studies the problem of minimizing convex functions over convex sets. The convexity property can make optimization in some sense "easier" than the general case - for example, any local minimum must be a global minimum.

Given a real vector space together with a convex, real-valued function

defined on a convex subset of, the problem is to find any point in for which the number is smallest, i.e., a point such that

for all .

The convexity of makes the powerful tools of convex analysis applicable. In finite-dimensional normed spaces, the Hahn–Banach theorem and the existence of subgradients lead to a particularly satisfying theory of necessary and sufficient conditions for optimality, a duality theory generalizing that for linear programming, and effective computational methods.

Convex minimization has applications in a wide range of disciplines, such as automatic control systems, estimation and signal processing, communications and networks, electronic circuit design, data analysis and modeling, statistics (optimal design), and finance. With recent improvements in computing and in optimization theory, convex minimization is nearly as straightforward as linear programming. Many optimization problems can be reformulated as convex minimization problems. For example, the problem of maximizing a concave function f can be re-formulated equivalently as a problem of minimizing the function -f, which is convex.

Read more about Convex Optimization:  Convex Optimization Problem, Theory, Standard Form, Examples, Lagrange Multipliers, Methods, Convex Minimization With Good Complexity: Self-concordant Barriers, Quasiconvex Minimization, Convex Maximization, Extensions