Higher Dimensions
A number of algorithms are known for the three-dimensional case, as well as for arbitrary dimensions. See http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html. See also David Mount's Lecture Notes for comparison. Refer to Lecture 4 for the latest developments, including Chan's algorithm.
For a finite set of points, the convex hull is a convex polyhedron in three dimensions, or in general a convex polytope for any number of dimensions, whose vertices are some of the points in the input set. Its representation is not so simple as in the planar case, however. In higher dimensions, even if the vertices of a convex polytope are known, construction of its faces is a non-trivial task, as is the dual problem of constructing the vertices given the faces. The size of the output may be exponentially larger than the size of the input, and even in cases where the input and output are both of comparable size the known algorithms for high-dimensional convex hulls are not output-sensitive due both to issues with degenerate inputs and with intermediate results of high complexity.
Read more about this topic: Convex Hull Algorithms
Famous quotes containing the words higher and/or dimensions:
“But I, being man, can kiss
And bed-spread-eagle too;
All flesh shall come to this,
Being less than angel is,
Yet higher far in bliss
As it entwines with you.”
—William Robert Rodgers (19091969)
“Words are finite organs of the infinite mind. They cannot cover the dimensions of what is in truth. They break, chop, and impoverish it.”
—Ralph Waldo Emerson (18031882)