Conventional Landing Gear - Disadvantages

Disadvantages

The conventional landing gear arrangement does have some disadvantages, compared to nose wheel equipped aircraft.

Tailwheel aircraft are much more subject to "nose-over" accidents due to injudicious application of brakes by the pilot.

Conventional geared aircraft are much more susceptible to ground looping. A ground loop occurs when directional control is lost on the ground and the tail of the aircraft passes the nose, swapping ends, in some cases completing a full circle. This event can result in damage to the aircraft's undercarriage, tires, wingtips, propeller and engine. Ground-looping occurs because, whereas a nosewheel aircraft is steered from ahead of the center of gravity, a taildragger is steered from behind (much like driving a car backwards at high speed), so that on the ground a taildragger is inherently unstable, whereas a nosewheel aircraft will self-center if it swerves on landing. In addition, some tailwheel aircraft must transition from using the rudder to steer to using the tailwheel while passing through a speed range when neither is wholly effective due to the nose high angle of the aircraft. Avoiding ground loops requires increased pilot training and skill.

Tailwheel aircraft generally suffer from poorer forward visibility on the ground, compared to nose wheel aircraft. In some cases this necessitates "S" turning on the ground to allow the pilot to see while taxiing.

Tailwheel aircraft are more difficult to taxi during high wind conditions, due to the higher angle of attack on the wings which can then develop more lift on one side, making control difficult or impossible. They also suffer from lower crosswind capability and in some wind conditions may be unable to use crosswind runways or single-runway airports.

Also due to the nose high attitude on the ground, propeller powered taildraggers are more adversely affected by P-factor - asymmetrical thrust caused by the propeller's disk being angled to the direction of travel, which causes the blades to produce more lift when going up than when going down due to the difference in angle the blade experiences when passing through the air. The aircraft will then pull to the side of the downward blade. Some aircraft lack sufficient rudder authority in some flight regimes (particularly at higher power settings on takeoff) and the pilot must compensate before the aircraft starts to yaw. Some aircraft, particularly older, higher powered aircraft such as the P-51 Mustang, cannot use full power on takeoff and still safely control their direction of travel. On landing this is less of a factor, however opening the throttle to abort a landing can induce severe yaw unless the pilot is prepared for it.

Jet aircraft generally cannot use conventional landing gear, as this orients the engines at a high angle, causing their jet blast to bounce off the ground and back into the air, preventing the elevators from functioning properly.

Read more about this topic:  Conventional Landing Gear