Controlled NOT Gate - Operation

Operation

The CNOT gate flips the second qubit (the target qubit) if and only if the first qubit (the control qubit) is 1.

Before After
Control Target Control Target
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

The resulting value of the second qubit corresponds to the result of a classical XOR gate.

The CNOT gate can be represented by the matrix:

The first experimental realization of a CNOT gate was accomplished in 1995. Here, a single Beryllium ion in a trap was used. The two qubits were encoded into an optical state and into the vibrational state of the ion within the trap. At the time of the experiment, the reliability of the CNOT-operation was measured to be on the order of 90%.

In addition to a regular Controlled NOT gate, one could construct a Function-Controlled NOT gate, which accepts an arbitrary number n+1 of qubits as input, where n+1 is greater than or equal to 2 (a quantum register). This gate flips the last qubit of the register if and only if a built-in function, with the first n qubits as input, returns a 1. The Function-Controlled NOT gate is an essential element of the Deutsch-Jozsa algorithm. CNOT is also a kind of universal gate(in the classical sense of the word). It is easy to see that if the CONTROL is set to '1' the TARGET output is always NOT. So, a NOT GATE can be constructed using CNOT.

Read more about this topic:  Controlled NOT Gate

Famous quotes containing the word operation:

    It is critical vision alone which can mitigate the unimpeded operation of the automatic.
    Marshall McLuhan (1911–1980)