Continuous Functions On A Compact Hausdorff Space - Generalizations

Generalizations

The space C(X) of real or complex-valued continuous functions can be defined on any topological space X. In the non-compact case, however, C(X) is not in general a Banach space with respect to the uniform norm since it may contain unbounded functions. Hence it is more typical to consider the space, denoted here CB(X) of bounded continuous functions on X. This is a Banach space (in fact a commutative Banach algebra with identity) with respect to the uniform norm. (Hewitt & Stromberg 1965, Theorem 7.9)

It is sometimes desirable, particularly in measure theory, to further refine this general definition by considering the special case when X is a locally compact Hausdorff space. In this case, it is possible to identify a pair of distinguished subsets of CB(X): (Hewitt & Stromberg 1965, §II.7)

  • C00(X), the subset of C(X) consisting of functions with compact support. This is called the space of functions vanishing in a neighborhood of infinity.
  • C0(X), the subset of C(X) consisting of functions such that for every ε > 0, there is a compact set KX such that |f(x)| < ε for all xX\K. This is called the space of functions vanishing at infinity.

The closure of C00(X) is precisely C0(X). In particular, the latter is a Banach space.

Read more about this topic:  Continuous Functions On A Compact Hausdorff Space