Context Awareness - Computer Science

Computer Science

In computer science context awareness refers to the idea that computers can both sense, and react based on their environment. Devices may have information about the circumstances under which they are able to operate and based on rules, or an intelligent stimulus, react accordingly. The term context-awareness in ubiquitous computing was introduced by Schilit (1994). Context aware devices may also try to make assumptions about the user's current situation. Dey (2001) define context as "any information that can be used to characterize the situation of an entity."

While the computer science community initially perceived the context as a matter of user location, as Dey discuss, in the last few years this notion has been considered not simply as a state, but part of a process in which users are involved; thus, sophisticated and general context models have been proposed (see survey), to support context-aware applications which use them to (a) adapt interfaces, (b) tailor the set of application-relevant data, (c) increase the precision of information retrieval, (d) discover services, (e) make the user interaction implicit, or (f) build smart environments. For example: a context aware mobile phone may know that it is currently in the meeting room, and that the user has sat down. The phone may conclude that the user is currently in a meeting and reject any unimportant calls.

Context aware systems are concerned with the acquisition of context (e.g. using sensors to perceive a situation), the abstraction and understanding of context (e.g. matching a perceived sensory stimulus to a context), and application behaviour based on the recognized context (e.g. triggering actions based on context). As the user's activity and location are crucial for many applications, context awareness has been focused more deeply in the research fields of location awareness and activity recognition.

Context awareness is regarded as an enabling technology for ubiquitous computing systems. Context awareness is used to design innovative user interfaces, and is often used as a part of ubiquitous and wearable computing. It is also beginning to be felt in the internet with the advent of hybrid search engines. Schmidt, Beigl & Gellersen define human factors and physical environment as two important aspects relating to computer science. More recently, much work has also been done to ease the distribution of context information; Bellavista, Corradi, Fanelli & Foschini survey the several middleware solutions that have been designed to transparently implement context management and provisioning in the mobile system.

Human factors related context is structured into three categories: information on the user (knowledge of habits, emotional state, biophysiological conditions), the user’s social environment (co-location of others, social interaction, group dynamics), and the user’s tasks (spontaneous activity, engaged tasks, general goals). Likewise, context related to physical environment is structured into three categories: location (absolute position, relative position, co-location), infrastructure (surrounding resources for computation, communication, task performance), and physical conditions (noise, light, pressure).

Read more about this topic:  Context Awareness

Famous quotes containing the words computer and/or science:

    Family life is not a computer program that runs on its own; it needs continual input from everyone.
    Neil Kurshan (20th century)

    Science is built up with facts, as a house is with stones. But a collection of facts is no more a science than a heap of stones is a house.
    Jules Henri Poincare (1854–1912)