Context-free Grammar - Normal Forms

Normal Forms

Every context-free grammar that does not generate the empty string can be transformed into one in which no rule has the empty string as a product . If it does generate the empty string, it will be necessary to include the rule, but there need be no other ε-rule. Every context-free grammar with no ε-production has an equivalent grammar in Chomsky normal form or Greibach normal form. "Equivalent" here means that the two grammars generate the same language.

Because of the especially simple form of production rules in Chomsky Normal Form grammars, this normal form has both theoretical and practical implications. For instance, given a context-free grammar, one can use the Chomsky Normal Form to construct a polynomial-time algorithm that decides whether a given string is in the language represented by that grammar or not (the CYK algorithm).

Read more about this topic:  Context-free Grammar

Famous quotes containing the words normal and/or forms:

    A normal adolescent is so restless and twitchy and awkward that he can mange to injure his knee—not playing soccer, not playing football—but by falling off his chair in the middle of French class.
    Judith Viorst (20th century)

    There is a continual exchange of ideas between all minds of a generation. Journalists, popular novelists, illustrators, and cartoonists adapt the truths discovered by the powerful intellects for the multitude. It is like a spiritual flood, like a gush that pours into multiple cascades until it forms the great moving sheet of water that stands for the mentality of a period.
    Auguste Rodin (1849–1917)