Contactless Energy Transfer - Electric Energy Transfer

Electric Energy Transfer

An electric current flowing through a conductor, such as a wire, carries electrical energy. When an electric current passes through a circuit there is an electric field in the dielectric surrounding the conductor; magnetic field lines around the conductor and lines of electric force radially about the conductor.

In a direct current circuit, if the current is continuous, the fields are constant; there is a condition of stress in the space surrounding the conductor, which represents stored electric and magnetic energy, just as a compressed spring or a moving mass represents stored energy. In an alternating current circuit, the fields also alternate; that is, with every half wave of current and of voltage, the magnetic and the electric field start at the conductor and run outwards into space with the speed of light. Where these alternating fields impinge on another conductor a voltage and a current are induced.

Any change in the electrical conditions of the circuit, whether internal or external involves a readjustment of the stored magnetic and electric field energy of the circuit, that is, a so-called transient. A transient is of the general character of a condenser discharge through an inductive circuit. The phenomenon of the condenser discharge through an inductive circuit therefore is of the greatest importance to the engineer, as the foremost cause of high-voltage and high-frequency troubles in electric circuits.

Electromagnetic induction is proportional to the intensity of the current and voltage in the conductor which produces the fields and to the frequency. The higher the frequency the more intense the induction effect. Energy is transferred from a conductor that produces the fields (the primary) to any conductor on which the fields impinge (the secondary). Part of the energy of the primary conductor passes inductively across space into secondary conductor and the energy decreases rapidly along the primary conductor. A high frequency current does not pass for long distances along a conductor but rapidly transfers its energy by induction to adjacent conductors. Higher induction resulting from the higher frequency is the explanation of the apparent difference in the propagation of high frequency disturbances from the propagation of the low frequency power of alternating current systems. The higher the frequency the more preponderant become the inductive effects that transfer energy from circuit to circuit across space. The more rapidly the energy decreases and the current dies out along the circuit, the more local is the phenomenon.

The flow of electric energy thus comprises phenomena inside of the conductor and phenomena in the space outside of the conductor—the electric field—which, in a continuous current circuit, is a condition of steady magnetic and dielectric stress, and in an alternating current circuit is alternating, that is, an electric wave launched by the conductor to become far-field electromagnetic radiation traveling through space with the speed of light.

In electric power transmission and distribution, the phenomena inside of the conductor are of main importance, and the electric field of the conductor is usually observed only incidentally. Inversely, in the use of electric power for radio telecommunications it is only the electric and magnetic fields outside of the conductor, that is far-field electromagnetic radiation, which is of importance in transmitting the message. The phenomenon in the conductor, the current in the launching structure, is not used.

The electric charge displacement in the conductor produces a magnetic field and resultant lines of electric force. The magnetic field is a maximum in the direction concentric, or approximately so, to the conductor. That is, a ferromagnetic body tends to set itself in a direction at right angles to the conductor. The electric field has a maximum in a direction radial, or approximately so, to the conductor. The electric field component tends in a direction radial to the conductor and dielectric bodies may be attracted or repelled radially to the conductor.

The electric field of a circuit over which energy flows has three main axes at right angles with each other:

  1. The magnetic field, concentric with the conductor.
  2. The lines of electric force, radial to the conductor.
  3. The power gradient, parallel to the conductor.

Where the electric circuit consists of several conductors, the electric fields of the conductors superimpose upon each other, and the resultant magnetic field lines and lines of electric force are not concentric and radial respectively, except approximately in the immediate neighborhood of the conductor. Between parallel conductors they are conjugate of circles. Neither the power consumption in the conductor, nor the magnetic field, nor the electric field, are proportional to the flow of energy through the circuit. However, the product of the intensity of the magnetic field and the intensity of the electric field is proportional to the flow of energy or the power, and the power is therefore resolved into a product of the two components i and e, which are chosen proportional respectively to the intensity of the magnetic field and of the electric field. The component called the current is defined as that factor of the electric power which is proportional to the magnetic field, and the other component, called the voltage, is defined as that factor of the electric power which is proportional to the electric field.

In radio telecommunications the electric field of the transmit antenna propagates through space as a radio wave and impinges upon the receive antenna where it is observed by its magnetic and electric effect. Radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X rays and gamma rays are shown to be the same electromagnetic radiation phenomenon, differing one from the other only in frequency of vibration.

Read more about this topic:  Contactless Energy Transfer

Famous quotes containing the words electric, energy and/or transfer:

    Flabby, bald, lobotomized,
    he drifted in a sheepish calm,
    where no agonizing reappraisal
    jarred his concentration of the electric chair—
    hanging like an oasis in his air
    of lost connections. . . .
    Robert Lowell (1917–1977)

    Much of the modern resistance to chastity comes from men’s belief that they “own” their bodies—those vast and perilous estates, pulsating with the energy that made the worlds, in which they find themselves without their consent and from which they are ejected at the pleasure of Another!
    —C.S. (Clive Staples)

    If it had not been for storytelling, the black family would not have survived. It was the responsibility of the Uncle Remus types to transfer philosophies, attitudes, values, and advice, by way of storytelling using creatures in the woods as symbols.
    Jackie Torrence (b. 1944)