Formal Definition
Let π:P→M be a smooth principal G-bundle over a smooth manifold M. Then a principal G-connection on P is a differential 1-form on P with values in the Lie algebra of G which is G-equivariant and reproduces the Lie algebra generators of the fundamental vector fields on P.
In other words, it is an element ω of such that
- where Rg denotes right multiplication by g;
- if and Xξ is the vector field on P associated to ξ by differentiating the G action on P, then ω(Xξ) = ξ (identically on P).
Sometimes the term principal G-connection refers to the pair (P,ω) and ω itself is called the connection form or connection 1-form of the principal connection.
Read more about this topic: Connection (principal Bundle)
Famous quotes containing the words formal and/or definition:
“The manifestation of poetry in external life is formal perfection. True sentiment grows within, and art must represent internal phenomena externally.”
—Franz Grillparzer (17911872)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)