Connected Space - Stronger Forms of Connectedness

Stronger Forms of Connectedness

There are stronger forms of connectedness for topological spaces, for instance:

  • If there exist no two disjoint non-empty open sets in a topological space, X, X must be connected, and thus hyperconnected spaces are also connected.
  • Since a simply connected space is, by definition, also required to be path connected, any simply connected space is also connected. Note however, that if the "path connectedness" requirement is dropped from the definition of simple connectivity, a simply connected space does not need to be connected.
  • Yet stronger versions of connectivity include the notion of a contractible space. Every contractible space is path connected and thus also connected.

In general, note that any path connected space must be connected but there exist connected spaces that are not path connected. The deleted comb space furnishes such an example, as does the above mentioned topologist's sine curve.

Read more about this topic:  Connected Space

Famous quotes containing the words stronger and/or forms:

    I’m stronger knowing that while Donna Rice could be sold, she could not be bought.
    Donna Rice (b. c. 1962)

    The poet’s eye, in a fine frenzy rolling,
    Doth glance from heaven to earth, from earth to heaven;
    And as imagination bodies forth
    The forms of things unknown, the poet’s pen
    Turns them to shapes, and gives to airy nothing
    A local habitation and a name.
    William Shakespeare (1564–1616)