Connected Space - Formal Definition

Formal Definition

A topological space X is said to be disconnected if it is the union of two disjoint nonempty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice.

For a topological space X the following conditions are equivalent:

  1. X is connected.
  2. X cannot be divided into two disjoint nonempty closed sets.
  3. The only subsets of X which are both open and closed (clopen sets) are X and the empty set.
  4. The only subsets of X with empty boundary are X and the empty set.
  5. X cannot be written as the union of two nonempty separated sets.
  6. The only continuous functions from X to {0,1} are constant.

Read more about this topic:  Connected Space

Famous quotes containing the words formal and/or definition:

    This is no argument against teaching manners to the young. On the contrary, it is a fine old tradition that ought to be resurrected from its current mothballs and put to work...In fact, children are much more comfortable when they know the guide rules for handling the social amenities. It’s no more fun for a child to be introduced to a strange adult and have no idea what to say or do than it is for a grownup to go to a formal dinner and have no idea what fork to use.
    Leontine Young (20th century)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)