Congruence (general Relativity) - Relation With Vector Fields

Relation With Vector Fields

The integral curves of the vector field are a family of non-intersecting parameterized curves which fill up the spacetime. The congruence consists of the curves themselves, without reference to a particular parameterization. Many distinct vector fields can give rise to the same congruence of curves, since if is a nowhere vanishing scalar function, then and give rise to the same congruence.

However, in a Lorentzian manifold, we have a metric tensor, which picks out a preferred vector field among the vector fields which are everywhere parallel to a given timelike or spacelike vector field, namely the field of tangent vectors to the curves. These are respectively timelike or spacelike unit vector fields.

Read more about this topic:  Congruence (general Relativity)

Famous quotes containing the words relation and/or fields:

    Science is the language of the temporal world; love is that of the spiritual world. Man, indeed, describes more than he explains; while the angelic spirit sees and understands. Science saddens man; love enraptures the angel; science is still seeking, love has found. Man judges of nature in relation to itself; the angelic spirit judges of it in relation to heaven. In short to the spirits everything speaks.
    HonorĂ© De Balzac (1799–1850)

    If at first you don’t succeed, try again. Then quit. No use being a damn fool about it.
    —W.C. Fields (1879–1946)