Conditioning On The Level of Densities
Example. A point of the sphere x2 + y2 + z2 = 1 is chosen at random according to the uniform distribution on the sphere. The random variables X, Y, Z are the coordinates of the random point. The joint density of X, Y, Z does not exist (since the sphere is of zero volume), but the joint density fX,Y of X, Y exists,
(The density is non-constant because of a non-constant angle between the sphere and the plane.) The density of X may be calculated by integration,
surprisingly, the result does not depend on x in (−1,1),
which means that X is distributed uniformly on (−1,1). The same holds for Y and Z (and in fact, for aX + bY + cZ whenever a2 + b2 + c2 = 1).
Read more about this topic: Conditioning (probability)
Famous quotes containing the words conditioning and/or level:
“The climacteric marks the end of apologizing. The chrysalis of conditioning has once for all to break and the female woman finally to emerge.”
—Germaine Greer (b. 1939)
“On a level plain, simple mounds look like hills; and the insipid flatness of our present bourgeoisie is to be measured by the altitude of its great intellects.”
—Karl Marx (18181883)