Computational Problem - Promise Problems

Promise Problems

In computational complexity theory, it is usually implicitly assumed that any string in {0, 1}* represents an instance of the computational problem in question. However, sometimes not all strings {0, 1}* represent valid instances, and one specifies a proper subset of {0, 1}* as the set of "valid instances". Computational problems of this type are called promise problems.

The following is an example of a (decision) promise problem:

"Given a graph G, determine if every independent set in G has size at most 5, or G has an independent set of size at least 10."

Here, the valid instances are those graphs whose maximum independent set size is either at most 5 or at least 10.

Decision promise problems are usually represented as pairs of disjoint subsets (Lyes, Lno) of {0, 1}*. The valid instances are those in LyesLno. Lyes and Lno represent the instances whose answer is yes and no, respectively.

Promise problems play an important role in several areas of computational complexity, including hardness of approximation, property testing, and interactive proof systems.

Read more about this topic:  Computational Problem

Famous quotes containing the words promise and/or problems:

    Illness is the doctor to whom we pay most heed; to kindness, to knowledge, we make promise only; pain we obey.
    Marcel Proust (1871–1922)

    Nothing in the world can take the place of Persistence. Talent will not; nothing is more common than unsuccessful men with talent. Genius will not; unrewarded genius is almost a proverb. Education will not; the world is full of educated derelicts. Persistence and Determination alone are omnipotent. The slogan “Press On”, has solved and will always solve the problems of the human race.
    Calvin Coolidge (1872–1933)