Process
Scientists within the field of computational mechanics follow a list of tasks to analyze their target mechanical process:
1. A mathematical model of the physical phenomenon is made. This usually involves expressing the natural or engineering system in terms of partial differential equations. This step uses physics to formalize a complex system.
2. The mathematical equations are converted into forms which are suitable for digital computation. This step is called discretization because it involves creating an approximate discrete model from the original continuous model. In particular, it typically translates a partial differential equation (or a system thereof) into a system of algebraic equations. The processes involved in this step are studied in the field of numerical analysis.
3. Computer programs are made to solve the discretized equations using direct methods (which are single step methods resulting in the solution) or iterative methods (which start with a trial solution and arrive at the actual solution by successive refinement). Depending on the nature of the problem, supercomputers or parallel computers may be used at this stage.
4. The mathematical model, numerical procedures, and the computer codes are verified using either experimental results or simplified models for which exact analytical solutions are available. Quite frequently, new numerical or computational techniques are verified by comparing their result with those of existing well-established numerical methods. In many cases, benchmark problems are also available. The numerical results also have to be visualized and often physical interpretations will be given to the results.
Read more about this topic: Computational Mechanics
Famous quotes containing the word process:
“The invention of photography provided a radically new picture-making processa process based not on synthesis but on selection. The difference was a basic one. Paintings were madeconstructed from a storehouse of traditional schemes and skills and attitudesbut photographs, as the man on the street put, were taken.”
—Jean Szarkowski (b. 1925)
“A designer who is not also a couturier, who hasnt learned the most refined mysteries of physically creating his models, is like a sculptor who gives his drawings to another man, an artisan, to accomplish. For him the truncated process of creating will always be an interrupted act of love, and his style will bear the shame of it, the impoverishment.”
—Yves Saint Laurent (b. 1936)
“... geometry became a symbol for human relations, except that it was better, because in geometry things never go bad. If certain things occur, if certain lines meet, an angle is born. You cannot fail. Its not going to fail; it is eternal. I found in rules of mathematics a peace and a trust that I could not place in human beings. This sublimation was total and remained total. Thus, Im able to avoid or manipulate or process pain.”
—Louise Bourgeois (b. 1911)