Overview of Methods
One approach is to discretize the space in terms of grids (both orthogonal, and non-orthogonal) and solving Maxwell's equations at each point in the grid. Discretization consumes computer memory, and solving the equations takes significant time. Large scale CEM problems face memory and CPU limitations. As of 2007, CEM problems require supercomputers, high performance clusters, vector processors and/or parallel computer. Typical formulations involve either time-stepping through the equations over the whole domain for each time instant; or through banded matrix inversion to calculate the weights of basis functions, when modeled by finite element methods; or matrix products when using transfer matrix methods; or calculating integrals when using method of moments (MoM); or using fast fourier transforms, and time iterations when calculating by the split-step method or by BPM.
Read more about this topic: Computational Electromagnetics
Famous quotes containing the word methods:
“If you want to know the taste of a pear, you must change the pear by eating it yourself.... If you want to know the theory and methods of revolution, you must take part in revolution. All genuine knowledge originates in direct experience.”
—Mao Zedong (18931976)