Computational Complexity of Mathematical Operations - Number Theory

Number Theory

Algorithms for number theoretical calculations are studied in computational number theory.

Operation Input Output Algorithm Complexity
Greatest common divisor Two n-digit numbers One number with at most n digits Euclidean algorithm O(n2)
Binary GCD algorithm O(n2)
Left/right k-ary binary GCD algorithm O(n2/ log n)
Stehlé–Zimmermann algorithm O(log n M(n))
Schönhage controlled Euclidean descent algorithm O(log n M(n))
Jacobi symbol Two n-digit numbers 0, −1, or 1
Schönhage controlled Euclidean descent algorithm O(log n M(n))
Stehlé–Zimmermann algorithm O(log n M(n))
Factorial A fixed-size number m One O(m log m)-digit number Bottom-up multiplication O(m2 log m)
Binary splitting O(log m M(m log m))
Exponentiation of the prime factors of m O(log log m M(m log m)),
O(M(m log m))

Read more about this topic:  Computational Complexity Of Mathematical Operations

Famous quotes containing the words number and/or theory:

    Without claiming superiority of intellectual over visual understanding, one is nevertheless bound to admit that the cinema allows a number of æsthetic-intellectual means of perception to remain unexercised which cannot but lead to a weakening of judgment.
    Johan Huizinga (1872–1945)

    By the “mud-sill” theory it is assumed that labor and education are incompatible; and any practical combination of them impossible. According to that theory, a blind horse upon a tread-mill, is a perfect illustration of what a laborer should be—all the better for being blind, that he could not tread out of place, or kick understandingly.... Free labor insists on universal education.
    Abraham Lincoln (1809–1865)