Number of Compositions
Conventionally the empty composition is counted as the sole composition of 0, and there are no compositions of negative integers. There are 2n−1 compositions of n ≥ 1; here is a proof:
Placing either a plus sign or a comma in each of the n − 1 boxes of the array
produces a unique composition of n. Conversely, every composition of n determines an assignment of pluses and commas. Since there are n − 1 binary choices, the result follows. The same argument shows that the number of compositions of n into exactly k parts is given by the binomial coefficient . Note that by summing over all possible number of parts we recover 2n−1 as the total number of compositions of n:
For weak compositions, the number is, since each k-composition of n + k corresponds to a weak one of n by the rule → .
Read more about this topic: Composition (number Theory)
Famous quotes containing the words number of and/or number:
“As Jerome expanded, its chances for the title, the toughest little town in the West, increased and when it was incorporated in 1899 the citizens were able to support the claim by pointing to the number of thick stone shutters on the fronts of all saloons, gambling halls, and other places of business for protection against gunfire.”
—Administration in the State of Ariz, U.S. public relief program (1935-1943)
“I wonder love can have already set
In dreams, when weve not met
More times than I can number on one hand.”
—Philip Larkin (19221986)