Complex Systems - Topics in The Complex Systems Study - Complexity and Chaos Theory

Complexity and Chaos Theory

Complexity theory is rooted in chaos theory, which in turn has its origins more than a century ago in the work of the French mathematician Henri Poincaré. Chaos is sometimes viewed as extremely complicated information, rather than as an absence of order. The point is that chaos remains deterministic. With perfect knowledge of the initial conditions and of the context of an action, the course of this action can be predicted in chaos theory. As argued by Ilya Prigogine, complexity is non-deterministic, and gives no way whatsoever to precisely predict the future (see also).

The emergence of complexity theory shows a domain between deterministic order and randomness which is complex. This is referred as the 'edge of chaos'.

When one analyzes complex systems, sensitivity to initial conditions, for example, is not an issue as important as within the chaos theory in which it prevails. As stated by Colander, the study of complexity is the opposite of the study of chaos. Complexity is about how a huge number of extremely complicated and dynamic sets of relationships can generate some simple behavioral patterns, whereas chaotic behavior, in the sense of deterministic chaos, is the result of a relatively small number of non-linear interactions.

Therefore, the main difference between Chaotic systems and complex systems is their history. Chaotic systems do not rely on their history as complex ones do. Chaotic behaviour pushes a system in equilibrium into chaotic order, which means, in other words, out of what we traditionally define as 'order'. On the other hand, complex systems evolve far from equilibrium at the edge of chaos. They evolve at a critical state built up by a history of irreversible and unexpected events. In a sense chaotic systems can be regarded as a subset of complex systems distinguished precisely by this absence of historical dependence. Many real complex systems are, in practice and over long but finite time periods, robust. However, they do possess the potential for radical qualitative change of kind whilst retaining systemic integrity. Metamorphosis serves as perhaps more than a metaphor for such transformations.

Read more about this topic:  Complex Systems, Topics in The Complex Systems Study

Famous quotes containing the words complexity, chaos and/or theory:

    It is not only their own need to mother that takes some women by surprise; there is also the shock of discovering the complexity of alternative child-care arrangements that have been made to sound so simple. Those for whom the intended solution is equal parenting have found that some parents are more equal than others.
    Elaine Heffner (20th century)

    I have great belief in the fact that whenever there is chaos, it creates wonderful thinking. I consider chaos a gift.
    Septima Clark (1898–1987)

    Every theory is a self-fulfilling prophecy that orders experience into the framework it provides.
    Ruth Hubbard (b. 1924)