Limits of Powers
The section zero to the power of zero gives a number of examples of limits which are of the indeterminate form 00. The limits in these examples exist, but have different values, showing that the two-variable function xy has no limit at the point (0,0). One may ask at what points this function does have a limit.
More precisely, consider the function f(x,y) = xy defined on D = {(x,y) ∈ R2 : x > 0}. Then D can be viewed as a subset of R2 (that is, the set of all pairs (x,y) with x,y belonging to the extended real number line R =, endowed with the product topology), which will contain the points at which the function f has a limit.
In fact, f has a limit at all accumulation points of D, except for (0,0), (+∞,0), (1,+∞) and (1,−∞). Accordingly, this allows one to define the powers xy by continuity whenever 0 ≤ x ≤ +∞, −∞ ≤ y ≤ +∞, except for 00, (+∞)0, 1+∞ and 1−∞, which remain indeterminate forms.
Under this definition by continuity, we obtain:
- x+∞ = +∞ and x−∞ = 0, when 1 < x ≤ +∞.
- x+∞ = 0 and x−∞ = +∞, when 0 ≤ x < 1.
- 0y = 0 and (+∞)y = +∞, when 0 < y ≤ +∞.
- 0y = +∞ and (+∞)y = 0, when −∞ ≤ y < 0.
These powers are obtained by taking limits of xy for positive values of x. This method does not permit a definition of xy when x < 0, since pairs (x,y) with x < 0 are not accumulation points of D.
On the other hand, when n is an integer, the power xn is already meaningful for all values of x, including negative ones. This may make the definition 0n = +∞ obtained above for negative n problematic when n is odd, since in this case xn → +∞ as x tends to 0 through positive values, but not negative ones.
Read more about this topic: Complex Numbers Exponential
Famous quotes containing the words limits of, limits and/or powers:
“I shall have the veil withdrawn and be allowed to gaze unblinded on the narrow limits of my own possibilities.”
—Beatrice Potter Webb (18581943)
“In a virtuous action, I properly am; in a virtuous act, I add to the world; I plant into deserts conquered from Chaos and Nothing, and see the darkness receding on the limits of the horizon.”
—Ralph Waldo Emerson (18031882)
“Religion differs from magic in that it is not concerned with control or manipulation of the powers confronted. Rather it means submission to, trust in, and adoration of, what is apprehended as the divine nature of ultimate reality.”
—Joachim Wach (18981955)