Properties and Examples of Complex Geodesics
- Given u ∈ X with ||u|| = 1, the map f : Δ → B given by f(z) = zu is a complex geodesic.
- Geodesics can be reparametrized: if f is a complex geodesic and g ∈ Aut(Δ) is a bi-holomorphic automorphism of the disc Δ, then f g is also a complex geodesic. In fact, any complex geodesic f1 with the same image as f (i.e., f1(Δ) = f(Δ)) arises as such a reparametrization of f.
- If
-
- for some z ≠ 0, then f is a complex geodesic.
- If
-
- where α denotes the Caratheodory length of a tangent vector, then f is a complex geodesic.
Read more about this topic: Complex Geodesic
Famous quotes containing the words properties, examples and/or complex:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)
“I have met charming people, lots who would be charming if they hadnt got a complex about the British and everyone has pleasant and cheerful manners and I like most of the American voices. On the other hand I dont believe they have any God and their hats are frightful. On balance I prefer the Arabs.”
—Freya Stark (18931993)