Complex Differential Form

In mathematics, a complex differential form is a differential form on a manifold (usually a complex manifold) which is permitted to have complex coefficients.

Complex forms have broad applications in differential geometry. On complex manifolds, they are fundamental and serve as the basis for much of algebraic geometry, Kähler geometry, and Hodge theory. Over non-complex manifolds, they also play a role in the study of almost complex structures, the theory of spinors, and CR structures.

Typically, complex forms are considered because of some desirable decomposition that the forms admit. On a complex manifold, for instance, any complex k-form can be decomposed uniquely into a sum of so-called (p,q)-forms: roughly, wedges of p differentials of the holomorphic coordinates with q differentials of their complex conjugates. The ensemble of (p,q)-forms becomes the primitive object of study, and determines a finer geometrical structure on the manifold than the k-forms. Even finer structures exist, for example, in cases where Hodge theory applies.

Read more about Complex Differential Form:  Differential Forms On A Complex Manifold

Famous quotes containing the words complex, differential and/or form:

    It’s a complex fate, being an American, and one of the responsibilities it entails is fighting against a superstitious valuation of Europe.
    Henry James (1843–1916)

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    You may try but you can never imagine what it is to have a man’s form of genius in you, and to suffer the slavery of being a girl.
    George Eliot [Mary Ann (or Marian)