Complete Set of Invariants

Complete Set Of Invariants

In mathematics, a complete set of invariants for a classification problem is a collection of maps

(where X is the collection of objects being classified, up to some equivalence relation, and the are some sets), such that ∼ if and only if for all i. In words, such that two objects are equivalent if and only if all invariants are equal.

Symbolically, a complete set of invariants is a collection of maps such that

is injective.

As invariants are, by definition, equal on equivalent objects, equality of invariants is a necessary condition for equivalence; a complete set of invariants is a set such that equality of these is sufficient for equivalence. In the context of a group action, this may be stated as: invariants are functions of coinvariants (equivalence classes, orbits), and a complete set of invariants characterizes the coinvariants (is a set of defining equations for the coinvariants).

Read more about Complete Set Of Invariants:  Examples, Realizability of Invariants

Famous quotes containing the words complete and/or set:

    It is ... pathetic to observe the complete lack of imagination on the part of certain employers and men and women of the upper-income levels, equally devoid of experience, equally glib with their criticism ... directed against workers, labor leaders, and other villains and personal devils who are the objects of their dart-throwing. Who doesn’t know the wealthy woman who fulminates against the “idle” workers who just won’t get out and hunt jobs?
    Mary Barnett Gilson (1877–?)

    I’ll give my jewels for a set of beads,
    My gorgeous palace for a hermitage,
    ...
    And my large kingdom for a little grave,
    A little, little grave, an obscure grave.
    William Shakespeare (1564–1616)