Complete Set Of Invariants
In mathematics, a complete set of invariants for a classification problem is a collection of maps
(where X is the collection of objects being classified, up to some equivalence relation, and the are some sets), such that ∼ if and only if for all i. In words, such that two objects are equivalent if and only if all invariants are equal.
Symbolically, a complete set of invariants is a collection of maps such that
is injective.
As invariants are, by definition, equal on equivalent objects, equality of invariants is a necessary condition for equivalence; a complete set of invariants is a set such that equality of these is sufficient for equivalence. In the context of a group action, this may be stated as: invariants are functions of coinvariants (equivalence classes, orbits), and a complete set of invariants characterizes the coinvariants (is a set of defining equations for the coinvariants).
Read more about Complete Set Of Invariants: Examples, Realizability of Invariants
Famous quotes containing the words complete and/or set:
“The complete life, the perfect pattern, includes old age as well as youth and maturity. The beauty of the morning and the radiance of noon are good, but it would be a very silly person who drew the curtains and turned on the light in order to shut out the tranquillity of the evening. Old age has its pleasures, which, though different, are not less than the pleasures of youth.”
—W. Somerset Maugham (18741965)
“To sum up:
1. The cosmos is a gigantic fly-wheel making 10,000 revolutions a minute.
2. Man is a sick fly taking a dizzy ride on it.
3. Religion is the theory that the wheel was designed and set spinning to give him the ride.”
—H.L. (Henry Lewis)