Complete Heyting Algebra - Definition

Definition

Consider a partially ordered set (P, ≤) that is a complete lattice. Then P is a complete Heyting algebra if any of the following equivalent conditions hold:

  • P is a Heyting algebra, i.e. the operation ( x ∧ − ) has a right adjoint (also called the lower adjoint of a (monotone) Galois connection), for each element x of P.
  • For all elements x of P and all subsets S of P, the following infinite distributivity law holds:
  • P is a distributive lattice, i.e., for all x, y and z in P, we have
and P is meet continuous, i.e. the meet operations ( x ∧ − ) are Scott continuous for all x in P.

Read more about this topic:  Complete Heyting Algebra

Famous quotes containing the word definition:

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)