Complete Coloring - Complexity Theory

Complexity Theory

Finding ψ(G) is an optimization problem. The decision problem for complete coloring can be phrased as:

INSTANCE: a graph and positive integer
QUESTION: does there exist a partition of into or more disjoint sets such that each is an independent set for and such that for each pair of distinct sets is not an independent set.

Determining the achromatic number is NP-hard; determining if it is greater than a given number is NP-complete, as shown by Yannakakis and Gavril in 1978 by transformation from the minimum maximal matching problem.

Note that any coloring of a graph with the minimum number of colors must be a complete coloring, so minimizing the number of colors in a complete coloring is just a restatement of the standard graph coloring problem.

Read more about this topic:  Complete Coloring

Famous quotes containing the words complexity and/or theory:

    The price we pay for the complexity of life is too high. When you think of all the effort you have to put in—telephonic, technological and relational—to alter even the slightest bit of behaviour in this strange world we call social life, you are left pining for the straightforwardness of primitive peoples and their physical work.
    Jean Baudrillard (b. 1929)

    Don’t confuse hypothesis and theory. The former is a possible explanation; the latter, the correct one. The establishment of theory is the very purpose of science.
    Martin H. Fischer (1879–1962)