Compactification (physics) - Compactification in String Theory

Compactification in String Theory

In string theory, compactification is a generalization of Kaluza–Klein theory. It tries to conciliate the gap between the conception of our universe based on its four observable dimensions with the ten, eleven, or twenty-six dimensions which theoretical equations lead us to suppose the universe is made with. For this purpose it is assumed the extra dimensions are "wrapped" up on themselves, or "curled" up on Calabi–Yau spaces, or on orbifolds. Models in which the compact directions support fluxes are known as flux compactifications. The coupling constant of string theory, which determines the probability of strings to split and reconnect, can be described by a field called dilaton. This in turn can be described as the size of an extra (eleventh) dimension which is compact. In this way, the ten-dimensional type IIA string theory can be described as the compactification of M-theory in eleven dimensions. Furthermore, different versions of string theory are related by different compactifications in a procedure known as T-duality.

The formulation of more precise versions of the meaning of compactification in this context has been promoted by discoveries such as the mysterious duality.

Read more about this topic:  Compactification (physics)

Famous quotes containing the words string and/or theory:

    Supposing everyone lived at one time what would they say. They would observe that stringing string beans is universal.
    Gertrude Stein (1874–1946)

    Many people have an oversimplified picture of bonding that could be called the “epoxy” theory of relationships...if you don’t get properly “glued” to your babies at exactly the right time, which only occurs very soon after birth, then you will have missed your chance.
    Pamela Patrick Novotny (20th century)