Compact Group
In mathematics, a compact (topological, often understood) group is a topological group whose topology is compact. Compact groups are a natural generalisation of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.
In the following we will assume all groups are Hausdorff spaces.
Read more about Compact Group: Compact Lie Groups, Further Examples, Haar Measure, Representation Theory, Duality, From Compact To Non-compact Groups
Famous quotes containing the words compact and/or group:
“Take pains ... to write a neat round, plain hand, and you will find it a great convenience through life to write a small and compact hand as well as a fair and legible one.”
—Thomas Jefferson (17431826)
“It is not God that is worshipped but the group or authority that claims to speak in His name. Sin becomes disobedience to authority not violation of integrity.”
—Sarvepalli, Sir Radhakrishnan (18881975)